A Critique on the Research Activities and Potential Benefits of Dual-Fuel Diesel Engines Run on Biogas and Oxygenated Liquid Fuels

Author(s):  
Achinta Sarkar ◽  
Ujjwal K. Saha

The dual fuel concept of diesel engines is gaining popularity because of their ability to use alternative renewable gaseous fuels (natural gas, biogas, producer gas) and liquid fuels (biodiesel, alcohol, and others) simultaneously. The dual fuel mode (DFM) not only reduces the consumption of diesel or substitutes the diesel fuel, but there is an advantage of operating the engine in pure diesel mode (PDM) in case of shortage of gaseous primary fuel. The uses of renewable fuels in such engines have the positive impact on green ecosystem in terms of reduction in NOx and smoke emissions; however, there is the engine derating as performance penalty in comparison to engines operating under PDM. The most influential parameters in DFM engines are the type and flow rate of inducted gaseous fuel, fuel–air equivalence ratio (Φglobal), compression ratio (CR), and injection timing (IT). During the last few decades, the researchers have studied the effect of various parameters to improve the overall performance characteristics (performance, combustion, and emission) of DFM engines. This paper makes an in-depth analysis to unveil the physical characteristics of the crucial parameters of DFM engines with specific reference to the use of biogas with ternary blends (TB) of diesel, biodiesel, and ethanol. The paper addresses the issues on how the gaseous fuel flow rate, preheating of the intake charge, compression ratio, injection timing, and the type of oxygenated fuels dominate the overall performance characteristics.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5663 ◽  
Author(s):  
Mahantesh Marikatti ◽  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
Y.H. Basavarajappa ◽  
Manzoore Elahi M Soudagar ◽  
...  

The present work is mapped to scrutinize the consequence of biodiesel and gaseous fuel properties, and their impact on compression-ignition (CI) engine combustion and emission characteristics in single and dual fuel operation. Biodiesel prepared from non-edible oil source derived from Thevetia peruviana belonging to the plant family of Apocynaceaeis. The fuel has been referred as methyl ester of Thevetia peruviana (METP) and adopted as pilot fuel for the effective combustion of compressed gaseous fuel of hydrogen. This investigation is an effort to augment the engine performance of a biodiesel-gaseous fueled diesel engine operated under varied engine parameters. Subsequently, consequences of gas flow rate, injection timing, gas entry type, and manifold gas injection on the modified dual-fuel engine using conventional mechanical fuel injections (CMFIS) for optimum engine performance were investigated. Fuel consumption, CO, UHC, and smoke formations are spotted to be less besides higher NOx emissions compared to CMFIS operation. The fuel burning features such as ignition delay, burning interval, and variation of pressure and heat release rates with crank angle are scrutinized and compared with base fuel. Sustained research in this direction can convey practical engine technology, concerning fuel combinations in the dual fuel mode, paving the way to alternatives which counter the continued fossil fuel utilization that has detrimental impacts on the climate.


Author(s):  
Bhaskor J. Bora ◽  
Ujjwal K. Saha

Emulsification is one of the proven techniques to control the pollutants of the diesel engines. The present work attempts to explore the effect of injection timing (IT) of pilot fuel and compression ratio (CR) for an emulsified rice bran biodiesel (RBB)–biogas powered dual fuel diesel engine. A two-phase stable water emulsion of rice bran methyl ester has been prepared by optimizing the factors such as water content (5% and 10%), surfactants (3%), and hydrophilic lipophilic balance (HLB) values (4.3, 5, and 6). The stability of the emulsions is determined on the basis of measurement of mean droplet diameter and stability test. For experimentation, a 3.5 kW single cylinder, direct injection (DI), water cooled, variable CR diesel engine is converted into a biogas run dual fuel diesel engine by connecting a venturi gas mixer at the inlet manifold. A set of combinations comprising CRs of 18, 17.5, and 17, and ITs of 23 deg, 26 deg, 29 deg, and 32 deg before top dead centers (BTDC) at different loading conditions are considered. The investigation demonstrates a maximum brake thermal efficiency (BTE) of 23.62% along with a liquid fuel replacement of 82.22% at pilot fuel IT of 29 deg BTDC and CR of 18. For the same combination, CO and HC emissions are found to be least in all the test cases.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 644
Author(s):  
Manjunath Channappagoudra ◽  
K Ramesh ◽  
Manavendra G

In the first phase of investigation standard engine (SE) parameters are modified and optimized as Injector opening pressure (IOP) of 230 bar, Injection timing (IT) of 26.deg.bTDC, Compression ratio (CR) of 18, Nozzle hole (NH) of 5 hole and Piston bowl geometry (PBG) of Re-entrant toroidal piston bowl geometry (RTPBG)) when engine is operated with B20 (20% dairy scum biodiesel+80% diesel) fuel blend sole. The modified engine with these optimized parameters has shown improved brake thermal efficiency (BTE) when compared to standard engine operated with B20 (B20-SE), which could be attributed to improved fuel atomization, reduction of fuel droplet size, increased cylinder temperature, enhanced swirl and squish in the modified engine. In second phase of investigation, dual fuel (B20+Bio-CNG) experiments are conducted on modified engine to examine the effect Bio-CNG (enriched biogas/methane) flow rates such as 0.12, 0.24, 0.36, 0.48, 0.60 and 0.72 kg/hr on modified engine performance, exhaust emission and combustion characteristics. Then dual fuel experimental results are compared with neat diesel and B20 fuel operations. The dual fueled engine with all Bio-CNG flow rates has resulted lower performance and combustion characteristics with increased emissions (HC and CO) when compared to single fuel (B20) operated engine. From dual operation, it concludes that 0.48 kg/hr Bio-CNG flow rate has experienced the smooth running and improved performance, emission and combustion characteristics among all other Bio-CNG flow rates, hence 0.48 kg/hr Bio-CNG flow rate is optimized.  


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2825-2828

Fossil fuels are exhausting day by day at a very faster rate due to excessive demand for energy. Diesel engines are important prime movers used in different industries. When liquid petroleum fuels are burnt in diesel engines they emit harmful exhaust emissions which pollute the environment and may cause severe chronic diseases. Hence to mitigate over-dependency of crude oil and to protect the environment from harmful emissions, different engine experts and scientists have proposed dual fuel combustion technology to utilize low emissions renewable gaseous fuels without compromising its performance. Most of the work in the literature concentrate on utilizing gaseous fuels such as CNG, LPG, biogas, and hydrogen whereas very little quantum of work has been done to utilize acetylene in the IC engine. The higher flame velocity, high auto-ignition temperature, and high calorific value are the important combustion properties of acetylene which makes it more advantageous in CI engine than the available feedstock. The acetylene can be easily produced from calcium carbonate and water. Hence, the author has considered acetylene as a primary fuel in the present study and diesel as a pilot fuel in the modified CI engine. In this experimental investigation, the author has optimized the flow rate of acetylene by analyzing the performance and emission characteristics of the acetylene fuelled diesel engine at different loads and finally, the obtained results were compared with the neat diesel. The acetylene was inducted at a different gas flow rate of 2 LPM, 3 LPM, and 5 LPM. The results show that when acetylene induction takes place at 2 LPM, the brake thermal efficiency (BTE) increases by 1.4 % at full load during dual fuel mode compared to neat diesel. Brake specific energy consumption (BSEC) increases during acetylene induction whereas carbon monoxide, hydrocarbon, and smoke decrease particularly at medium to high engine loads this may be due to homogenous charge mixture formation, leading to stable combustion. However, there is a slight increase in oxides of nitrogen emissions, which may be due to higher flame speed causing uncontrolled combustion at peak loads relative to baseline diesel.


Sign in / Sign up

Export Citation Format

Share Document