scholarly journals YjbH mediates the oxidative stress response and infection by regulating SpxA1 and the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) in Listeria monocytogenes

Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1-19
Author(s):  
Changyong Cheng ◽  
Xiao Han ◽  
Jiali Xu ◽  
Jing Sun ◽  
Kang Li ◽  
...  
Food Control ◽  
2018 ◽  
Vol 85 ◽  
pp. 416-422 ◽  
Author(s):  
Yanyan Huang ◽  
Attila Alexandru Morvay ◽  
Xianming Shi ◽  
Yujuan Suo ◽  
Chunlei Shi ◽  
...  

2020 ◽  
Vol 8 (4) ◽  
pp. 521 ◽  
Author(s):  
Beatriz Manso ◽  
Beatriz Melero ◽  
Beatrix Stessl ◽  
Isabel Jaime ◽  
Martin Wagner ◽  
...  

The stress response of 11 strains of Listeria monocytogenes to oxidative stress was studied. The strains included ST1, ST5, ST7, ST6, ST9, ST87, ST199 and ST321 and were isolated from diverse food processing environments (a meat factory, a dairy plant and a seafood company) and sample types (floor, wall, drain, boxes, food products and water machine). Isolates were exposed to two oxidizing agents: 13.8 mM cumene hydroperoxide (CHP) and 100 mM hydrogen peroxide (H2O2) at 10 °C and 37 °C. Temperature affected the oxidative stress response as cells treated at 10 °C survived better than those treated at 37 °C. H2O2 at 37 °C was the condition tested resulting in poorest L. monocytogenes survival. Strains belonging to STs of Lineage I (ST5, ST6, ST87, ST1) were more resistant to oxidative stress than those of Lineage II (ST7, ST9, ST199 and ST321), with the exception of ST7 that showed tolerance to H2O2 at 10 °C. Isolates of each ST5 and ST9 from different food industry origins showed differences in oxidative stress response. The gene expression of two relevant virulence (hly) and stress (clpC) genes was studied in representative isolates in the stressful conditions. hly and clpC were upregulated during oxidative stress at low temperature. Our results indicate that conditions prevalent in food industries may allow L. monocytogenes to develop survival strategies: these include activating molecular mechanisms based on cross protection that can promote virulence, possibly increasing the risk of virulent strains persisting in food processing plants.


2021 ◽  
Vol 9 (6) ◽  
pp. 1116
Author(s):  
Laurens Maertens ◽  
Pauline Cherry ◽  
Françoise Tilquin ◽  
Rob Van Houdt ◽  
Jean-Yves Matroule

Bacteria encounter elevated copper (Cu) concentrations in multiple environments, varying from mining wastes to antimicrobial applications of copper. As the role of the environment in the bacterial response to Cu ion exposure remains elusive, we used a tagRNA-seq approach to elucidate the disparate responses of two morphotypes of Caulobacter crescentus NA1000 to moderate Cu stress in a complex rich (PYE) medium and a defined poor (M2G) medium. The transcriptome was more responsive in M2G, where we observed an extensive oxidative stress response and reconfiguration of the proteome, as well as the induction of metal resistance clusters. In PYE, little evidence was found for an oxidative stress response, but several transport systems were differentially expressed, and an increased need for histidine was apparent. These results show that the Cu stress response is strongly dependent on the cellular environment. In addition, induction of the extracytoplasmic function sigma factor SigF and its regulon was shared by the Cu stress responses in both media, and its central role was confirmed by the phenotypic screening of a sigF::Tn5 mutant. In both media, stalked cells were more responsive to Cu stress than swarmer cells, and a stronger basal expression of several cell protection systems was noted, indicating that the swarmer cell is inherently more Cu resistant. Our approach also allowed for detecting several new transcription start sites, putatively indicating small regulatory RNAs, and additional levels of Cu-responsive regulation.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 345
Author(s):  
Hidemasa Bono

Data accumulation in public databases has resulted in extensive use of meta-analysis, a statistical analysis that combines the results of multiple studies. Oxidative stress occurs when there is an imbalance between free radical activity and antioxidant activity, which can be studied in insects by transcriptome analysis. This study aimed to apply a meta-analysis approach to evaluate insect oxidative transcriptomes using publicly available data. We collected oxidative stress response-related RNA sequencing (RNA-seq) data for a wide variety of insect species, mainly from public gene expression databases, by manual curation. Only RNA-seq data of Drosophila melanogaster were found and were systematically analyzed using a newly developed RNA-seq analysis workflow for species without a reference genome sequence. The results were evaluated by two metric methods to construct a reference dataset for oxidative stress response studies. Many genes were found to be downregulated under oxidative stress and related to organ system process (GO:0003008) and adherens junction organization (GO:0034332) by gene enrichment analysis. A cross-species analysis was also performed. RNA-seq data of Caenorhabditis elegans were curated, since no RNA-seq data of insect species are currently available in public databases. This method, including the workflow developed, represents a powerful tool for deciphering conserved networks in oxidative stress response.


2021 ◽  
Vol 72 (8) ◽  
pp. 3294-3306
Author(s):  
Ariel M Hughes ◽  
H Tucker Hallmark ◽  
Lenka Plačková ◽  
Ondrej Novák ◽  
Aaron M Rashotte

Abstract Cytokinin response factors (CRFs) are transcription factors that are involved in cytokinin (CK) response, as well as being linked to abiotic stress tolerance. In particular, oxidative stress responses are activated by Clade III CRF members, such as AtCRF6. Here we explored the relationships between Clade III CRFs and oxidative stress. Transcriptomic responses to oxidative stress were determined in two Clade III transcription factors, Arabidopsis AtCRF5 and tomato SlCRF5. AtCRF5 was required for regulated expression of >240 genes that are involved in oxidative stress response. Similarly, SlCRF5 was involved in the regulated expression of nearly 420 oxidative stress response genes. Similarities in gene regulation by these Clade III members in response to oxidative stress were observed between Arabidopsis and tomato, as indicated by Gene Ontology term enrichment. CK levels were also changed in response to oxidative stress in both species. These changes were regulated by Clade III CRFs. Taken together, these findings suggest that Clade III CRFs play a role in oxidative stress response as well as having roles in CK signaling.


Sign in / Sign up

Export Citation Format

Share Document