scholarly journals Circular RNA ZNF609 functions as a competing endogenous RNA in regulating E2F transcription factor 6 through competitively binding to microRNA-197-3p to promote the progression of cervical cancer progression

Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 927-936
Author(s):  
Qiao Gu ◽  
Wenjie Hou ◽  
Lijuan Shi ◽  
Huan Liu ◽  
Zonghao Zhu ◽  
...  
Author(s):  
Mingyi Zhou ◽  
Zhuo Yang ◽  
Danbo Wang ◽  
Peng Chen ◽  
Yong Zhang

Abstract Background As a novel type of non-coding RNA, circular RNAs (circRNAs) play a critical role in the initiation and development of various diseases, including cancer. However, the exact function of circRNAs in human cervical cancer remains largely unknown. Methods We identified the circRNA signature of upregulated circRNAs between cervical cancer and paired adjacent normal tissues. Using two different cohorts and GEO database, a total of six upregulated circRNAs were identified with a fold change > 2, and P < 0.05. Among these six circRNAs, hsa_circ_0072088 (circZFR) was the only exonic circRNA significantly overexpressed in cervical cancer. Functional experiments were performed to investigate the biological function of circZFR. CircRNA pull-down, circRNA immunoprecipitation (circRIP) and Co-immunoprecipitation (Co-IP) assays were executed to investigate the molecular mechanism underlying the function of circZFR. Results Functionally, circZFR knockdown represses the proliferation, invasion, and tumor growth. Furthermore, circRNA pull-down experiments combined with mass spectrometry unveil the interactions of circZFR with Single-Stranded DNA Binding Protein 1 (SSBP1). Mechanistically, circZFR bound with SSBP1, thereby promoting the assembly of CDK2/cyclin E1 complexes. The activation of CDK2/cyclin E1 complexes induced p-Rb phosphorylation, thus releasing activated E2F1 leading to cell cycle progression and cell proliferation. Conclusion Our findings provide the first evidence that circZFR is a novel onco-circRNA and might be a potential biomarker and therapeutic target for cervical cancer patients.


2017 ◽  
Vol 403 ◽  
pp. 305-317 ◽  
Author(s):  
Zhenyu Zhong ◽  
Mengge Huang ◽  
Mengxin Lv ◽  
Yunfeng He ◽  
Changzhu Duan ◽  
...  

2019 ◽  
Vol 20 (4) ◽  
pp. 861 ◽  
Author(s):  
Dongsong Nie ◽  
Jiewen Fu ◽  
Hanchun Chen ◽  
Jingliang Cheng ◽  
Junjiang Fu

MicroRNA-34a (miR-34a), a tumor suppressor, has been reported to be dysregulated in various human cancers. MiR-34a is involves in certain epithelial-mesenchymal transition (EMT)-associated signal pathways to repress tumorigenesis, cancer progression, and metastasis. Due to the particularity of miR-34 family in tumor-associated EMT, the significance of miR-34a is being increasingly recognized. Competing endogenous RNA (ceRNA) is a novel concept involving mRNA, circular RNA, pseudogene transcript, and long noncoding RNA regulating each other’s expressions using microRNA response elements to compete for the binding of microRNAs. Studies showed that miR-34a is efficient for cancer therapy. Here, we provide an overview of the function of miR-34a in tumor-associated EMT. ceRNA hypothesis plays an important role in miR-34a regulation in EMT, cancer progression, and metastasis. Its potential roles and challenges as a microRNA therapeutic candidate are discussed. As the negative effect on cancer progression, miR-34a should play crucial roles in clinical diagnosis and cancer therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Huijie Gu ◽  
Xiangyang Cheng ◽  
Jun Xu ◽  
Kaifeng Zhou ◽  
Chong Bian ◽  
...  

As a subclass of noncoding RNAs, circular RNAs (circRNAs) have been demonstrated to play a critical role in regulating gene expression in eukaryotes. Recent studies have revealed the pivotal functions of circRNAs in cancer progression. Nevertheless, how circRNAs participate in osteosarcoma (OS) development and progression are not well understood. In the present study, we identified a circRNA circFAT1(e2) with an upregulated expression level in OS tissues. By functional experiments, we found that circFAT1(e2) depletion significantly suppressed the proliferation and reduced migration in OS. In terms of mechanism, we found that circFAT1(e2) inhibited miR-181b, while miR-181b targeted HK2. By releasing the inhibition of miR-181b on HK2 expression, leading to attenuated OS progression. Mechanistic investigations suggested that circFAT1(e2) served as a competing endogenous RNA (ceRNA) of miR-181b to enhance HK2 expression. On the whole, our study indicated that circFAT1(e2) exerted oncogenic roles in OS and suggested the circFAT1(e2)/miR-181b/HK2 axis might be a potential therapeutic target.


2021 ◽  
Author(s):  
Mingyi Zhou ◽  
Zhuo Yang ◽  
Danbo Wang ◽  
Peng Chen ◽  
Yong Zhang

Abstract Background: As a novel type of non-coding RNA, circular RNAs (circRNAs) play a critical role in the initiation and development of various diseases, including cancer. However, the exact function of circRNAs in human cervical cancer remains largely unknown. Methods: We identified the circRNA signature of upregulated circRNAs between cervical cancer and paired adjacent normal tissues. Using two different cohorts and GEO database, a total of six upregulated circRNAs were identified with a fold change >2, and P <0.05. Among these six circRNAs, hsa_circ_0072088 (circZFR) was the only exonic circRNA significantly overexpressed in cervical cancer. Functional experiments were performed to investigate the biological function of circZFR. CircRNA pull-down, circRNA immunoprecipitation (circRIP) and Co-immunoprecipitation (Co-IP) assays were executed to investigate the molecular mechanism underlying the function of circZFR.Results: Functionally, circZFR knockdown represses the proliferation, invasion, and tumor growth. Furthermore, circRNA pull-down experiments combined with mass spectrometry unveil the interactions of circZFR with Single-Stranded DNA Binding Protein 1 (SSBP1). Mechanistically, circZFR bound with SSBP1, thereby promoting the assembly of CDK2/cyclin E1 complexes. The activation of CDK2/cyclin E1 complexes induced p-Rb phosphorylation, thus releasing activated E2F1 leading to cell cycle progression and cell proliferation. Conclusion: Our findings provide the first evidence that circZFR is a novel onco-circRNA and might be a potential biomarker and therapeutic target for cervical cancer patients.


2021 ◽  
Author(s):  
Mingyi Zhou ◽  
Zhuo Yang ◽  
Danbo Wang ◽  
Peng Chen ◽  
Yong Zhang

Abstract Background: As a novel type of non-coding RNA, circular RNAs (circRNAs) play a critical role in the initiation and development of various diseases, including cancer. However, the exact function of circRNAs in human cervical cancer remains largely unknown. Methods: We identified the circRNA signature of upregulated circRNAs between cervical cancer and paired adjacent normal tissues. Using two different cohorts and GEO database, a total of six upregulated circRNAs were identified with a fold change >2, and P <0.05. Among these six circRNAs, hsa_circ_0072088 (circZFR) was the only exonic circRNA significantly overexpressed in cervical cancer. Functional experiments were performed to investigate the biological function of circZFR. CircRNA pull-down, circRNA immunoprecipitation (circRIP) and Co-immunoprecipitation (Co-IP) assays were executed to investigate the molecular mechanism underlying the function of circZFR.Results: Functionally, circZFR knockdown represses the proliferation, invasion, and tumor growth. Furthermore, circRNA pull-down experiments combined with mass spectrometry unveil the interactions of circZFR with Single-Stranded DNA Binding Protein 1 (SSBP1). Mechanistically, circZFR bound with SSBP1, thereby promoting the assembly of CDK2/cyclin E1 complexes. The activation of CDK2/cyclin E1 complexes induced p-Rb phosphorylation, thus releasing activated E2F1 leading to cell cycle progression and cell proliferation. Conclusion: Our findings provide the first evidence that circZFR is a novel onco-circRNA and might be a potential biomarker and therapeutic target for cervical cancer patients.


2020 ◽  
pp. jim-2020-001537
Author(s):  
Shanshan Wu ◽  
Shimei Liu ◽  
Huaihua Song ◽  
Jiayu Xia

Circular RNA (circRNA) is an endogenous RNA molecule with a stable closed-loop structure. The circular RNA HIPK3 (circHIPK3) is highly expressed in hepatocellular carcinoma and facilitates tumor growth. However, its role in cervical cancer (CC) and its regulatory mechanisms are not well-studied. This study aimed for investigating the function of circHIPK3 on proliferation and metastasis of CC cells. In this study, quantitative real-time PCR assay was adopted to delve into the circHIPK3 expression in CC cell lines. Cell counting kit-8 and colony formation assays were used to evaluate the influence of overexpression and knockdown of circHIPK3 on CC cell proliferation. Dual-luciferase reporter assay was employed to probe into the binding of miR-485-3p to circHIPK3 and miR-485-3p to the 3’ untranslated region (UTR) of fibroblast growth factor 2 (FGF2), respectively. FGF2 protein expression was detected by western blot analysis. This study confirmed that circHIPK3 was highly expressed in CC tissues. Overexpressed circHIPK3 could remarkably expedite the proliferation, migration and invasion of SiHa cells, and knocking down circHIPK3 could significantly impede the proliferation, migration and invasion of HeLa cells. MiR-485-3p can directly bind to circHIPK3 and the 3’UTR of FGF2. Overexpression of circHIPK3 triggered the upregulation of FGF2 expression while knockdown of circHIPK3 reduced FGF2 expression in CC cells, and the transfection of miR-485-3p mimics reversed the upregulation of FGF2 expression and enhanced malignant phenotypes in CC cells with overexpressed circHIPK3.


Sign in / Sign up

Export Citation Format

Share Document