scholarly journals Characterizing relationship between chemicals and in vitro bioactivities of teas made by six typical processing methods using a single Camellia sinensis cultivar, Meizhan

Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1251-1263
Author(s):  
Guanhua Xie ◽  
Jingna Yan ◽  
Anxia Lu ◽  
Jirui Kun ◽  
Bei Wang ◽  
...  
2009 ◽  
Vol 27 (1) ◽  
pp. 30-34
Author(s):  
AR Shoae Hassani ◽  
N Ordouzadeh ◽  
A Ghaemi ◽  
N Amirmozafari ◽  
K Hamdi ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Reza Azadi Gonbad ◽  
Uma Rani Sinniah ◽  
Maheran Abdul Aziz ◽  
Rosfarizan Mohamad

The use ofin vitroculture has been accepted as an efficient technique for clonal propagation of many woody plants. In the present research, we report the results of a number of experiments aimed at optimizing micropropagation protocol for tea (Camellia sinensis(L.) O. Kuntze) (clone Iran 100) using nodal segments as the explant. The effect of different combinations and concentrations of plant growth regulators (PGR) (BAP, TDZ, GA3) on shoot multiplication and elongation was assessed. The influence of exposure to IBA in liquid form prior to transfer to solid media on rooting of tea microshoots was investigated. The results of this study showed that the best treatment for nodal segment multiplication in terms of the number of shoot per explant and shoot elongation was obtained using 3 mg/L BAP in combination with 0.5 mg/L GA3. TDZ was found to be inappropriate for multiplication of tea clone Iran 100 as it resulted in hyperhydricity especially at concentrations higher than 0.05 mg/L. Healthy shoots treated with 300 mg/L IBA for 30 min followed by transfer to 1/2 strength MS medium devoid of PGR resulted in 72.3% of shoots producing roots and upon transferring them to acclimatization chamber 65% survival was obtained prior to field transfer.


2021 ◽  
Vol 11 (18) ◽  
pp. 8479
Author(s):  
Sereen M. B. Bataineh ◽  
Yaser H. Tarazi ◽  
Wafá A. Ahmad

The aim of this study was to evaluate the in vitro antimicrobial activity of medicinal Methanolic plant extracts against multidrug-resistant bacteria to determine the cytotoxicity of these extracts on eukaryotic cells, and to confirm their efficacy against Methicillin-Resistant Staphylococcus aureus (MRSA) in experimental animals. The effects of the methanol extract of sixty folk plants were investigated on; MRSA, Extended Spectrum Beta-Lactamase E. coli and MDR Pseudomonas aeruginosa by disc diffusion and MIC assay. Cytotoxicity was determined using MTT and hemolysis of human erythrocytes. Three plant extracts with the highest antimicrobial activities were tested using a challenge experiment on mice. Systemic infection was performed by intraperitoneal inoculation of (5 × 106 CFU/mL) of MRSA isolate. Then mice received 300 mg/kg body weight of the plant extracts daily for seven days. The efficacy of plant extracts was evaluated by general health, mortality rate, gross lesion, and histopathology study of inoculated mice. Only ten plants showed activities against different MDR bacteria with inhibitory zones ranging from (8 to 22 mm) in diameter. Of the ten medicinal plant extracts, and Aloysia citrodora showed the highest activities against MRSA and Camellia sinensis MSSA isolates, with MIC values ranging from 0.5 to 1.5 mg/mL, followed by Hibiscus sabdariffa, Thymus vulgaris, and Glycyrrhiza glabra. Furthermore, the extract of the effective plants showed low toxicity against Vero and fibroblasts cell lines, along with inhibitory activities to erythrocytes membrane disruption. The in vivo study demonstrated that Camellia sinensis showed significant activity against MRSA infections in mice. The results validate that these plants are effective and safe antibacterial agents against multidrug-resistance bacteria, and have the potential to be utilized as an alternative to antibiotics for the treatment of bacterial infections.


1995 ◽  
Vol 50 (9-10) ◽  
pp. 602-607 ◽  
Author(s):  
Hiroshi Ashihara ◽  
Hisayo Shimizu ◽  
Yoshiyuki Takeda ◽  
Takeo Suzuki ◽  
Fiona M. Gillies ◽  
...  

Abstract The metabolism of [8-14C ]adenine and [2-14C]caffeine was examined in leaf segments from flush shoots of tea cultivars with high and low caffeine content. The caffeine biosynthesis pathway from AMP via theobromine was operative in both high and low caffeine containing cultivars. There was a m ore rapid rate of caffeine biosynthesis from [8-14C ]adenine in the high caffeine cultivars while the rate of degradation of both adenine nucleotides and caffeine into CO2 was greatest in cultivars with a low endogenous caffeine content. Cell-free p reparations from tea shoots contained an N-methyltransferase, that is a keyenzyme in the caffeine biosynthesis pathway; more in-vitro activity was detected in preparations from high caffeine containing cultivars. The data obtained suggest that the high caffeine containing cultivars have a more rapid rate of caffeine biosynthesis and a slower rate of caffeine catabolism than cultivars with a low endogenous caffeine content


Sign in / Sign up

Export Citation Format

Share Document