scholarly journals Long non-coding RNA LOC366613 alleviates the cerebral ischemic injury via regulating the miR-532-5p/phosphatase and tensin homolog axis

Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2511-2522
Author(s):  
Zhenze Lu ◽  
Ling Li ◽  
Lei Wei ◽  
Jifu Cai ◽  
Jun Wu
Neuroreport ◽  
2019 ◽  
Vol 30 (14) ◽  
pp. 945-952
Author(s):  
Yanyong Cheng ◽  
Yunfeng Jiang ◽  
Yu Sun ◽  
Hong Jiang

2021 ◽  
Author(s):  
Yahya H Hobani

Deregulation of long non-coding RNAs (lncRNAs) has been implicated in tumorigenesis. FALEC is a lncRNA upregulated in multiple cancer types. FALEC functions as an oncogene through various mechanisms, such as competitively binding miRNAs and regulation of PI3K/AKT, Tp53 and phosphatase and tensin homolog signaling pathways. Pertinent to clinical practice, the use of FALEC as a putative biomarker has been identified. These findings suggested that FALEC might play a pivotal role in human cancers. Further studies are warranted to examine the diagnostic and prognostic performance of FALEC as a noninvasive biomarker in liquid biopsy samples and promote its development to be a clinically utilizable prognostic cancer biomarker and molecular therapeutic target.


2019 ◽  
Vol 30 (11) ◽  
pp. 2052-2058 ◽  
Author(s):  
Dawn F. Wolfgram

The high frequency of cognitive impairment in individuals on hemodialysis is well characterized. In-center hemodialysis patients are disproportionately affected by cognitive impairment compared with other dialysis populations, identifying hemodialysis itself as a possible factor. The pathophysiology of cognitive impairment has multiple components, but vascular-mediated cerebral injury appears to contribute based on studies demonstrating increased cerebral ischemic lesions and atrophy in brain imaging of patients on hemodialysis. Patients on hemodialysis may be at increased risk for cerebral ischemic injury disease due to vasculopathy associated with ESKD and from their comorbid diseases, such as hypertension and diabetes. This review focuses on the intradialytic cerebral hypoperfusion that can occur during routine hemodialysis due to the circulatory stress of hemodialysis. This includes a review of current methods used to monitor intradialytic cerebral perfusion and the structural and functional cognitive outcomes that have been associated with changes in intradialytic cerebral perfusion. Monitoring of intradialytic cerebral perfusion may become clinically relevant as nephrologists try to avoid the cognitive complications seen with hemodialysis. Identifying the appropriate methods to assess risk for cerebral ischemic injury and the relationship of intradialytic cerebral hypoperfusion to cognitive outcomes will help inform the decision to use intradialytic cerebral perfusion monitoring in the clinical setting as part of a strategy to prevent cognitive decline.


Sign in / Sign up

Export Citation Format

Share Document