scholarly journals Kinetics of change in colour and some bio-chemical composition during fermentation of cocoa bean

2016 ◽  
Vol 2 (1) ◽  
Author(s):  
M.C. Ndukwu ◽  
M. Udofia
2012 ◽  
Vol 12 (21) ◽  
pp. 10239-10255 ◽  
Author(s):  
L. T. Padró ◽  
R. H. Moore ◽  
X. Zhang ◽  
N. Rastogi ◽  
R. J. Weber ◽  
...  

Abstract. Aerosol composition and mixing state near anthropogenic sources can be highly variable and can challenge predictions of cloud condensation nuclei (CCN). The impacts of chemical composition on CCN activation kinetics is also an important, but largely unknown, aspect of cloud droplet formation. Towards this, we present in-situ size-resolved CCN measurements carried out during the 2008 summertime August Mini Intensive Gas and Aerosol Study (AMIGAS) campaign in Atlanta, GA. Aerosol chemical composition was measured by two particle-into-liquid samplers measuring water-soluble inorganic ions and total water-soluble organic carbon. Size-resolved CCN data were collected using the Scanning Mobility CCN Analysis (SMCA) method and were used to obtain characteristic aerosol hygroscopicity distributions, whose breadth reflects the aerosol compositional variability and mixing state. Knowledge of aerosol mixing state is important for accurate predictions of CCN concentrations and that the influence of an externally-mixed, CCN-active aerosol fraction varies with size from 31% for particle diameters less than 40 nm to 93% for accumulation mode aerosol during the day. Assuming size-dependent aerosol mixing state and size-invariant chemical composition decreases the average CCN concentration overprediction (for all but one mixing state and chemical composition scenario considered) from over 190–240% to less than 20%. CCN activity is parameterized using a single hygroscopicity parameter, κ, which averages to 0.16 ± 0.07 for 80 nm particles and exhibits considerable variability (from 0.03 to 0.48) throughout the study period. Particles in the 60–100 nm range exhibited similar hygroscopicity, with a κ range for 60 nm between 0.06–0.076 (mean of 0.18 ± 0.09). Smaller particles (40 nm) had on average greater κ, with a range of 0.20–0.92 (mean of 0.3 ± 0.12). Analysis of the droplet activation kinetics of the aerosol sampled suggests that most of the CCN activate as rapidly as calibration aerosol, suggesting that aerosol composition exhibits a minor (if any) impact on CCN activation kinetics.


2021 ◽  
Vol 316 ◽  
pp. 1019-1024
Author(s):  
O. A. Ignatova ◽  
A. A. Dyatchina

The paper presents the studies’ results of chemical composition, structure, and physico-mechanical properties of high-calcium ashes from the Kansk-Achinsk coals (2017-2019 selection). It was found that ash has a complex poly-mineral composition and contains hydraulically active minerals and oxides of СаОfr, β-C2S, CA, C3A, C4AF, C2F, CaSO4. According to the content of CaOfr, MgO does not meet standards’ requirements. The uniformity of the volume change is maintained by the composition with 50% of cement. The structure and hardening kinetics of ash and ash-cement stone compositions, obtained from the test of normal density, were analyzed. It was established that the hardening of compositions with ash from the Kansk-Achinsk coals was largely influenced by ash minerals. An equivalent amount of cement in composite binders cannot be replaced. In order to obtain a positive effect, compositions with ash instead cement of no more than 30% and a part of fine aggregate, without exceeding the ratio of ash: cement = 1: 1, should be used.


2021 ◽  
Vol 1016 ◽  
pp. 1753-1758
Author(s):  
Sergey Zherebtsov ◽  
Nikita Stepanov ◽  
Gennady Salishchev

The influence of various factors on the efficiency of microstructure refinement in two-phase titanium alloys with respect to a well-known Ti-6Al-4V alloy was discussed. The kinetics of microstructure evolution in titanium alloys with a lamellar type α/β microstructure during large plastic deformation depends mainly on temperature and strain rate, type of the initial microstructure, thickness of the α lamellae, path of deformation and chemical composition. Each parameter should be controlled to provide the most efficient microstructure refinement during conventional metalforming methods.


2013 ◽  
Vol 212 ◽  
pp. 115-120 ◽  
Author(s):  
Henryk Kania ◽  
Piotr Liberski

In this paper the current knowledge about the influence of alloy additions used in galvanizing baths has been analysed. The optimum concentration of Al, Ni and Pb addition has been established. Tests have been conducted to determine the synergistic influence of the addition of AlNiPb in a zinc bath upon the structure and growth kinetics of coatings. The structure and the chemical composition of coatings obtained on steel with low silicon contents and on Sandelin steel have been developed. It has been determined that the synergistic influence of the AlNiPb addition effectively lowers the reactivity of Sandelin steel and it improves zincs flowing off the product surface which results in decreased zinc consumption and better appearance of the coating. The structure of coatings obtained in a Zn-AlNiPb bath on Sandelin steel is similar to the structure of coatings obtained on low-silicon steel.


2015 ◽  
Vol 226 ◽  
pp. 155-160 ◽  
Author(s):  
Henryk Kania

In the paper the results of tests on obtaining ZnAl23Si coatings on low-silicon steel by use of the batch hot dip method have been presented. The growth kinetics of coatings obtained in a ZnAl23 bath with the content of 1% and 2% of Si has been defined. The structure has been developed, the chemical composition of particular structural components of the coating and its phase composition have been established. It has been determined that coatings obtained in the ZnAl23Si bath are continuous and they have uniform thickness. The presence of silicon in the bath allows to reduce excessive coating thickness. The coating is composed of an external layer which is formed by the bath components and of a diffusion layer of the intermetallic FeAl3phase.


2014 ◽  
Vol 605 ◽  
pp. 35-38
Author(s):  
Eirini Varouti

The aim of the present work was the preparation and characterization of FeSiB amorphous magnetic ribbons with the following chemical composition: Fe80SixB20-x, x=5,6,8 and Fe75Si15B10. Differential Scanning Calorimetry was employed in order to study the thermal stability and structural changes during the transformations that took place. Much emphasis is placed on the analysis of the crystallization kinetics.


2013 ◽  
Vol 117 (3) ◽  
pp. 378-382 ◽  
Author(s):  
А.S. Kholmanskiy ◽  
А.Z. Tilov ◽  
Е.Yu. Sorokinа

2017 ◽  
Vol 1 (86) ◽  
pp. 5-14
Author(s):  
J. Pacyna

Purpose: of the presented investigations was showing that the crack resistance of tool steels depends on their hardenability and phase transformations occurring in the quenched matrix at tempering. The chemical composition of austenite decides on the steel hardenability while phase transformations after tempering can be influenced (apart from the chemical composition) by the heating method. Design/methodology/approach: of investigations was based on the analysis of dilatograms and the achieved aim was to obtain the hard tool steel (app. 500 HV30) for hot works. Samples of a diameter of 10 mm (without a notch) made of this steel were not broken by the Charpy impact test of energy of 30 kGm. Findings: of these investigations are practical. Grain boundaries of prior austenite should be protected against secondary precipitates, which constitute natural nuclei of diffusive structures. It is also possible to control phase transformations at tempering. Research limitations/implications: constitute the availability of the adequate equipment for investigating the kinetics of phase transformations of undercooled austenite and the kinetics of phase transformations after tempering. Practical implications: for the industry are such that the proposed tool steels of a high crack resistance contain molybdenum and nickel. Thus, these steels are very expensive. Originality/value: of these investigations was confirmed in the industrial practice.


2015 ◽  
Vol 60 (1) ◽  
pp. 497-502 ◽  
Author(s):  
E. RoŻniata ◽  
R. Dziurka

Abstract The results of a microstructure and hardness investigations of the hypoeutectoid steels Mn-Cr-Ni, imitating by its chemical composition toughening steels, are presented in the paper. The analysis of the kinetics of phase transformations of undercooled austenite of steels containing different amounts of alloying elements in their chemical composition, constitutes the aim of investigations. Metallographic examinations were carried out on a Axiovert 200 MAT light microscope. Sections were etched with a 3% HNO3 solution in C2H5OH. Dilatometric tests were performed using L78 R.I.T.A dilatometer. Using dilatometer the changes of elongation (Δl) of the samples with dimensions Ø 3×10 mm as a function of temperature (T) were registered. Obtained heating curves were used to precisely determine the critical temperatures (critical points) for the tested steels, while the differentiation of obtained cooling curves allowed to precisely define the temperatures of the beginning and the end of particular transition to draw CCT diagrams. Four CCT diagrams worked out for the tested hypoeutectoid steels (for quenching of steel) are - in the majority of steels - separated by the undercooled austenitic range and are of the letter „C” shape. However, for steels with Mn and Ni the separation of diffusive transformations from the bainitic transformation by the stable austenitic range is not observed. Hardenability of four investigated hypoeutectoid steels is similar, but still not high. To obtain martensite in the microstructure of these steels, it is necessary to apply the cooling rate higher than 25°C/s. The exception constitutes the Mn - Ni steel, in which only cooling with the rate higher than 50°C/s allows to achieve the martensitic microstructure and to avoid diffusive transformations (pearlitic and ferritic).


Sign in / Sign up

Export Citation Format

Share Document