scholarly journals The ulnar collateral ligament loading paradox between in-vitro and in-vivo studies on baseball pitching (narrative review)

2021 ◽  
Vol 8 (1) ◽  
pp. 19-29
Author(s):  
Bart Van Trigt ◽  
Liset (W) Vliegen ◽  
Ton (Ajr) Leenen ◽  
DirkJan (Hej) Veeger
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Ann Privorotskiy ◽  
Shreyas P Bhavsar ◽  
Frederick F Lang ◽  
Jian Hu ◽  
Juan P Cata

Abstract Glioblastoma (GBM) is an aggressive malignant CNS tumor with a median survival of 15 months after diagnosis. Standard therapy for GBM includes surgical resection, radiation, and temozolomide. Recently, anesthetics and analgesics have received attention for their potential involvement in mediating tumor growth. This narrative review investigated whether various members of the 2 aforementioned classes of drugs have a definitive impact on GBM progression by summarizing pertinent in vitro, in vivo, and clinical studies. Recent publications regarding general anesthetics have been inconsistent, showing that they can be pro-tumoral or antitumoral depending on the experimental context. The local anesthetic lidocaine has shown consistent antitumoral effects in vitro. Clinical studies looking at anesthetics have not concluded that their use improves patient outcomes. In vitro and in vivo studies looking at opioid involvement in GBM have demonstrated inconsistent findings regarding whether these drugs are pro-tumoral or antitumoral. Nonsteroidal anti-inflammatory drugs, and specifically COX-2 inhibitors, have shown inconsistent findings across multiple studies looking at whether they are beneficial in halting GBM progression. Until multiple repeatable studies show that anesthetics and analgesics can suppress GBM growth, there is no strong evidence to recommend changes in the anesthetic care of these patients.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 150
Author(s):  
Huy Xuan Ngo ◽  
Yunpeng Bai ◽  
Jingjing Sha ◽  
Shinji Ishizuka ◽  
Erina Toda ◽  
...  

The advent of bioresorbable materials to overcome limitations and replace traditional bone-reconstruction titanium-plate systems for bone fixation, thus achieving greater efficiency and safety in medical and dental applications, has ushered in a new era in biomaterial development. Because of its bioactive osteoconductive ability and biocompatibility, the forged composite of uncalcined/unsintered hydroxyapatite and poly L-lactic acid (u-HA/PLLA) has attracted considerable interest from researchers in bone tissue engineering, as well as from clinicians, particularly for applications in maxillofacial reconstructive surgery. Thus, various in vitro studies, in vivo studies, and clinical trials have been conducted to investigate the feasibility and weaknesses of this biomaterial in oral and maxillofacial surgery. Various technical improvements have been proposed to optimize its advantages and limit its disadvantages. This narrative review presents an up-to-date, comprehensive review of u-HA/PLLA, a bioactive osteoconductive and bioresorbable bone-reconstruction and -fixation material, in the context of oral and maxillofacial surgery, notably maxillofacial trauma, orthognathic surgery, and maxillofacial reconstruction. It simultaneously introduces new trends in the development of bioresorbable materials that could used in this field. Various studies have shown the superiority of u-HA/PLLA, a third-generation bioresorbable biomaterial with high mechanical strength, biocompatibility, and bioactive osteoconductivity, compared to other bioresorbable materials. Future developments may focus on controlling its bioactivity and biodegradation rate and enhancing its mechanical strength.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mario Fadin ◽  
Maria C. Nicoletti ◽  
Marzia Pellizzato ◽  
Manuela Accardi ◽  
Maria G. Baietti ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document