Characterisation of powder and microstructure, density and surface roughness for additively manufactured stent using medical grade ASTM F75 cobalt chromium (CoCrMo) by selective laser melting (SLM) technology

Author(s):  
M. Asnawi Omar ◽  
B. T. H. T. Baharudin ◽  
S. Sulaiman ◽  
M. I. S. Ismail ◽  
M. Afian Omar
2021 ◽  
Vol 1135 (1) ◽  
pp. 012028
Author(s):  
Benedikt Adelmann ◽  
Melanie Abb ◽  
Ralf Hellmann

Abstract Selective laser melting is generally considered as to improve the design of medical implants, thus supporting medical treatment and maintaining mobility of invalid and older people. In particular, medical grade titanium alloys are in favour for spinal implants, as being nowadays manufactured by, e.g., milling. Selective laser melting offers the advantage of an adapted elasticity as to avoid stress shielding within the backbone by including complex lattice structures inside the individualized implant. For the integration into the backbone, surface properties, particularly surface roughness, are crucial with respect to biocompatibility and cell growth. Opposite to conventional milling, selective laser melting, however, results in an inferior surface roughness, leading to the necessity of downstream process steps. We report on cell growth and cellular adhesion of human primary fibroblasts on medical grade Ti-6Al-4V fabricated by selective laser melting followed by combinations of milling, hot isostatic pressing, chemical surface treatment and steam-sterilization to generate different surface conditions for cell growth. For example, cell growth is studied for varying milling path spacing on SLM parts exhibiting different surface roughness. Our results reveal good cell growth for milling path spacing lower than 0.18 mm as compared to higher milling path spacing and not milled surfaces. Cell fluorescence images and SEM images show that the cell growth is additionally hampered by the edges of the milling path. Conveniently, process failures such as pores originating from the selective laser melting process do not hamper the cell growth.


2016 ◽  
Vol 1133 ◽  
pp. 113-118
Author(s):  
Saiful Anwar Che Ghani ◽  
Wan Sharuzi Wan Harun ◽  
Zahrul Adnan Mat Taib ◽  
Fadzil Faisae Ab Rashid ◽  
Ramli Mohd Hazlen ◽  
...  

The recent introduction of selective laser melting (SLM) for the processing of medical grade cobalt chromium (CoCr) alloy has led to a complex shape fabrication of porous custom CoCr alloy implants with controlled porosity to meet the requirements of the anatomy and functions at the region of implantation. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade CoCr alloy in cubical structures with volume based porosity ranging between 60% and 80% produced using SLM rapid manufacturing process. Analysis by FE is considered beneficial to predict the effective mechanical properties of the porous structures manufactured by SLM due to minimization of the need for expensive and time consuming physical testing. Cellular structures modelling for fabrication with Direct Metal Laser Sintering machine were designed to vary between 60% and 80% to study the effect of structural variation on mechanical properties of the cellular porous structure. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. FE results show that with the material properties in the functions of porosities, minimum mesh size of 0.2 mm for triangular shape mesh and boundary as well as load conditions as applied in this study, agreement in equivalent stress, strain and deformation with the experimental results can be achieved to some extent. The technique for FE in this study can be used to investigate stress distribution in three dimensional model of real bone.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5390
Author(s):  
André Edelmann ◽  
Lisa Riedel ◽  
Ralf Hellmann

We report on the generation of a cobalt-chromium dental framework with superior precision and fitting accuracy using selective laser melting. The objective of this study is the reduction of surface roughness and the possibility to manufacture a dental framework with high precision for passive fit with attachments, in particular a round tack. After selective laser melting, the dental framework is thermally post processed at 750 °C, shot-blasted with glass and highly polished. Nominal to actual 3D form deviation is analyzed by stripe light projection, revealing deviations being less than 250 μm, i.e., warpage is as low as to permit dental application and accurate passive fit. In particular, the critical area of the dental framework, the fixture to the implant (overdenture) shows negligible deviations. This superior fitting accuracy is confirmed by joining the bar with a testing stylus.


Author(s):  
Filippo Simoni ◽  
Andrea Huxol ◽  
Franz-Josef Villmer

AbstractIn the last years, Additive Manufacturing, thanks to its capability of continuous improvements in performance and cost-efficiency, was able to partly replace and redefine well-established manufacturing processes. This research is based on the idea to achieve great cost and operational benefits especially in the field of tool making for injection molding by combining traditional and additive manufacturing in one process chain. Special attention is given to the surface quality in terms of surface roughness and its optimization directly in the Selective Laser Melting process. This article presents the possibility for a remelting process of the SLM parts as a way to optimize the surfaces of the produced parts. The influence of laser remelting on the surface roughness of the parts is analyzed while varying machine parameters like laser power and scan settings. Laser remelting with optimized parameter settings considerably improves the surface quality of SLM parts and is a great starting point for further post-processing techniques, which require a low initial value of surface roughness.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2017 ◽  
Vol 30 (3) ◽  
pp. 1259-1270 ◽  
Author(s):  
Damien McParland ◽  
Szymon Baron ◽  
Sarah O’Rourke ◽  
Denis Dowling ◽  
Eamonn Ahearne ◽  
...  

Author(s):  
Mennatallah F El Kashouty ◽  
Allan EW Rennie ◽  
Mootaz Ghazy ◽  
Ahmed Abd El Aziz

Manufacturing process constraints and design complexities are the main challenges that face the aftermarket automotive industry. For that reason, recently, selective laser melting (SLM) is being recognised as a viable approach in the fabrication of injection moulding tool inserts. Due to its versatility, SLM technology is capable of producing freeform designs. For the first reported time, in this study SLM is recognized for its novel application in overcoming fabrication complexities for prism shaped topology of a vehicle headlamp’s reflector injection moulding tool insert. Henceforth, performance measures of the SLM-fabricated injection mould tool insert is assessed in comparison to a CNC-milled counterpart to improve quality characteristics. Tests executed and detailed in this paper are divided into two stages; the first stage assesses both fabricated tool inserts in terms of manufacturability; the second stage assesses the functionality of the end-products by measuring the surface roughness, dimensional accuracy and light reflectivity from the vehicle reflectors. The results obtained show that employing SLM technology can offer an effective and efficient alternative to subtractive manufacturing, successfully producing tool inserts with complex surface topology. Significant benefits in terms of surface roughness, dimensional accuracy and product functionality were achieved through the use of SLM technology. it was concluded that the SLM-fabricated inserts products proved to have relatively lower values of surface roughness in comparison to their CNC counterparts.


Sign in / Sign up

Export Citation Format

Share Document