High Efficiency 3-D Printed Microchannel Polymer Heat Exchangers for Air Conditioning Applications

Author(s):  
Erfan Rasouli ◽  
Emily Fricke ◽  
Vinod Narayanan
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 574
Author(s):  
Ana Vafadar ◽  
Ferdinando Guzzomi ◽  
Kevin Hayward

Air heat exchangers (HXs) are applicable in many industrial sectors because they offer a simple, reliable, and cost-effective cooling system. Additive manufacturing (AM) systems have significant potential in the construction of high-efficiency, lightweight HXs; however, HXs still mainly rely on conventional manufacturing (CM) systems such as milling, and brazing. This is due to the fact that little is known regarding the effects of AM on the performance of AM fabricated HXs. In this research, three air HXs comprising of a single fin fabricated from stainless steel 316 L using AM and CM methods—i.e., the HXs were fabricated by both direct metal printing and milling. To evaluate the fabricated HXs, microstructure images of the HXs were investigated, and the surface roughness of the samples was measured. Furthermore, an experimental test rig was designed and manufactured to conduct the experimental studies, and the thermal performance was investigated using four characteristics: heat transfer coefficient, Nusselt number, thermal fluid dynamic performance, and friction factor. The results showed that the manufacturing method has a considerable effect on the HX thermal performance. Furthermore, the surface roughness and distribution, and quantity of internal voids, which might be created during and after the printing process, affect the performance of HXs.


2010 ◽  
Vol 44-47 ◽  
pp. 2433-2437 ◽  
Author(s):  
Yu Lieh Wu ◽  
Yu Dai Shiue ◽  
Kuo Hsiang Chien ◽  
Chiu Li Wang

To avoid continuous damage of ozone layer and deterioration of global warming, many countries have devoted to the development and application of natural refrigerant. Although CO2, an alternative refrigerant in the area of air conditioning is not the best all-temperature refrigerant, it has the lowest operating risk as compared to hydrocarbon (HCs) and ammonia.Traditional drinking fountain provides heat source through secondary energy source - electric heating; however, the heating effect is limited. Since heat pump has a high performance, this study used a carbon dioxide heat pump, which has energy-saving effect and high efficiency, to provide heat source to drinking fountains. It further assembled the drinking fountain system with carbon dioxide heat pump and analyzed its performance.


2015 ◽  
Vol 27 (15) ◽  
pp. 2479-2484 ◽  
Author(s):  
Christopher S. Roper ◽  
Randall C. Schubert ◽  
Kevin J. Maloney ◽  
David Page ◽  
Christopher J. Ro ◽  
...  

Author(s):  
Amanda J. Wheeler ◽  
Ryan W. Allen ◽  
Kerryn Lawrence ◽  
Christopher T. Roulston ◽  
Jennifer Powell ◽  
...  

During extreme air pollution events, such as bushfires, public health agencies often recommend that vulnerable individuals visit a nearby public building with central air conditioning to reduce their exposure to smoke. However, there is limited evidence that these “cleaner indoor air shelters” reduce exposure or health risks. We quantified the impact of a “cleaner indoor air shelter” in a public library in Port Macquarie, NSW, Australia when concentrations of fine particulate matter (PM2.5) were elevated during a local peat fire and nearby bushfires. Specifically, we evaluated the air quality improvements with central air conditioning only and with the use of portable high efficiency particulate air (HEPA) filter air cleaners. We measured PM2.5 from August 2019 until February 2020 by deploying pairs of low-cost PM2.5 sensors (i) inside the main library, (ii) in a smaller media room inside the library, (iii) outside the library, and (iv) co-located with regulatory monitors located in the town. We operated two HEPA cleaners in the media room from August until October 2019. We quantified the infiltration efficiency of outdoor PM2.5 concentrations, defined as the fraction of the outdoor PM2.5 concentration that penetrates indoors and remains suspended, as well as the additional effect of HEPA cleaners on PM2.5 concentrations. The infiltration efficiency of outdoor PM2.5 into the air-conditioned main library was 30%, meaning that compared to the PM2.5 concentration outdoors, the concentrations of outdoor-generated PM2.5 indoors were reduced by 70%. In the media room, when the HEPA cleaners were operating, PM2.5 concentrations were reduced further with a PM2.5 infiltration efficiency of 17%. A carefully selected air-conditioned public building could be used as a cleaner indoor air shelter during episodes of elevated smoke emissions. Further improvements in indoor air quality within the building can be achieved by operating appropriately sized HEPA cleaners.


2016 ◽  
Vol 06 (08) ◽  
pp. 41-50
Author(s):  
M. Abo El Nasr ◽  
M. M. Kamal ◽  
H. E. Saad ◽  
A. M. Farouk

Author(s):  
Juan G. Cevallos ◽  
Frank Robinson ◽  
Avram Bar-Cohen ◽  
Hugh Bruck

Polymer heat exchangers (PHXs), using thermally-enhanced composites, constitute a “disruptive” thermal technology that can lead to significant water and energy savings in the thermoelectric energy sector. This paper reviews current trends in electricity generation, water use, and the inextricable relationship between the two trends in order to identify the possible role of PHXs in seawater cooling applications. The use of once-through seawater cooling as a replacement for freshwater recirculating systems is identified as a viable way to reduce the use of freshwater and to increase power plant efficiency. The widespread use of seawater as a coolant can be made possible by the favorable qualities of thermally-enhanced polymer composites: good corrosion resistance, higher thermal conductivities, higher strengths, low embodied energy and good manufacturability. The authors use several seawater cooling case studies to explore the potential water and energy savings made possible by the use of PHX technology. The results from three case studies suggest that heat exchangers made with thermally enhanced polymer composites require less energy input over their lifetime than corrosion resistant metals, which generally have much higher embodied energy than polymers and polymers composites. Also, the use of seawater can significantly reduce the use of freshwater as a coolant, given the inordinate amounts of water required for even a 1MW heat exchanger.


Author(s):  
Hidefumi Araki ◽  
Shinichi Higuchi ◽  
Shinya Marushima ◽  
Shigeo Hatamiya

The AHAT (advanced humid air turbine) system, which can be equipped with a heavy-duty, single-shaft gas turbine, aims at high efficiency equal to that of the HAT system. Instead of an intercooler, a WAC (water atomization cooling) system is used to reduce compressor work. The characteristics of a humidification tower (a saturator), which is used as a humidifier for the AHAT system, were studied. The required packing height and the exit water temperature from the humidification tower were analyzed for five virtual gas turbine systems with different capacities (1MW, 3.2MW, 10MW, 32MW and 100MW) and pressure ratios (π = 8, 12, 16, 20 and 24). Thermal efficiency of the system was compared with that of a simple cycle and a recuperative cycle with and without the WAC system. When the packing height of the humidification tower was changed, the required size varied for the three heat exchangers around the humidification tower (a recuperator, an economizer and an air cooler). The packing height with which the sum total of the size of the packing and these heat exchangers became a minimum was 1m for the lowest pressure ratio case, and 6m for the highest pressure ratio case.


Sign in / Sign up

Export Citation Format

Share Document