scholarly journals Process optimization and feature analysis of an anaerobic fermentation microbial community in a cold region

2021 ◽  
Vol 34 (1) ◽  
pp. 1-11
Author(s):  
Binyu Lu ◽  
Meiyu Jia ◽  
Zhanjiang Pei ◽  
Fengmei Shi ◽  
Yabing Gao ◽  
...  
2022 ◽  
Vol 345 ◽  
pp. 126485
Author(s):  
Jeong Sung Jung ◽  
Balasubramani Ravindran ◽  
Ilavenil Soundharrajan ◽  
Mukesh Kumar Awasthi ◽  
Ki Choon Choi

2019 ◽  
Author(s):  
Qiang Lu ◽  
Gentu Ge ◽  
Qiming Cheng ◽  
Meiling Hou ◽  
shan Yu Jia

Abstract Background We aim to assess the nutritional quality of alfalfa in saline-alkali and the main fermenting microorganisms acting on alfalfa in saline-alkali soils.Results In this study, We tested the nutrient composition and microbial community of Zhongmu No. 3 (salt-tolerant) alfalfa, including the nutritional fermentation quality and microbial diversity analysis of alfalfa before and after ensiling (30 days and 60 days). Then we got closely genus that related to saline-alkali soils.The validity of the microbiological data was confirmed by alpha diversity analysis. From the Microbial network, we obtained the difference of the saline-type mantle type.Conclusions we found that the silage quality of Saline-alkali alfalfa can be ensured by anaerobic fermentation with addition. The LABs that play a major role in the saline alkaline alfalfa silage are Lactobacillus, lactococcus and enterococcus.


mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Ping Hu ◽  
Lauren Tom ◽  
Andrea Singh ◽  
Brian C. Thomas ◽  
Brett J. Baker ◽  
...  

ABSTRACTOil reservoirs are major sites of methane production and carbon turnover, processes with significant impacts on energy resources and global biogeochemical cycles. We applied a cultivation-independent genomic approach to define microbial community membership and predict roles for specific organisms in biogeochemical transformations in Alaska North Slope oil fields. Produced water samples were collected from six locations between 1,128 m (24 to 27°C) and 2,743 m (80 to 83°C) below the surface. Microbial community complexity decreased with increasing temperature, and the potential to degrade hydrocarbon compounds was most prevalent in the lower-temperature reservoirs. Sulfate availability, rather than sulfate reduction potential, seems to be the limiting factor for sulfide production in some of the reservoirs under investigation. Most microorganisms in the intermediate- and higher-temperature samples were related to previously studied methanogenic and nonmethanogenic archaea and thermophilic bacteria, but one candidate phylum bacterium, a member of theAcetothermia(OP1), was present in Kuparuk sample K3. The greatest numbers of candidate phyla were recovered from the mesothermic reservoir samples SB1 and SB2. We reconstructed a nearly complete genome for an organism from the candidate phylumParcubacteria(OD1) that was abundant in sample SB1. Consistent with prior findings for members of this lineage, the OD1 genome is small, and metabolic predictions support an obligately anaerobic, fermentation-based lifestyle. At moderate abundance in samples SB1 and SB2 were members of bacteria from other candidate phyla, includingMicrogenomates(OP11),Atribacteria(OP9), candidate phyla TA06 and WS6, andMarinimicrobia(SAR406). The results presented here elucidate potential roles of organisms in oil reservoir biological processes.IMPORTANCEThe activities of microorganisms in oil reservoirs impact petroleum resource quality and the global carbon cycle. We show that bacteria belonging to candidate phyla are present in some oil reservoirs and provide the first insights into their potential roles in biogeochemical processes based on several nearly complete genomes.


Sign in / Sign up

Export Citation Format

Share Document