scholarly journals Female sterile (1) yolkless: a recessive female sterile mutation in Drosophila melanogaster with depressed numbers of coated pits and coated vesicles within the developing oocytes.

1987 ◽  
Vol 105 (1) ◽  
pp. 199-206 ◽  
Author(s):  
P J DiMario ◽  
A P Mahowald

Ultrastructural analysis of developing oocytes produced by the recessive female sterile mutant, yolkless (yl), in Drosophila melanogaster shows that yl+ gene activity is necessary for coated pit and coated vesicle formation within these oocytes. 29 alleles of the mutation are known to exist, and they fall either within a strongly affected class or a weakly affected class. Analysis of oocytes produced by females homozygous for the strongly affected class of alleles shows a greater than 90% reduction in the numbers of coated pits and coated vesicles. These oocytes have very little proteinaceous yolk, and the females accumulate vitellogenin (the yolk protein precursor) within their hemolymph. Moreover, females homozygous or hemizygous for a given strong allele produce mature oocytes that are flaccid. Alternatively, females homozygous or hemizygous for weak alleles produce yolk-filled oocytes, but the number of coated pits and coated vesicles within these oocytes is 50% of that found in the oocytes of wild-type females. Despite the presence of yolk within these oocytes, females homozygous for weak yl- alleles remain sterile, and their mature oviposited eggs collapse with time.

1994 ◽  
Vol 127 (4) ◽  
pp. 915-934 ◽  
Author(s):  
H Damke ◽  
T Baba ◽  
D E Warnock ◽  
S L Schmid

Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline-inducible promoter. Overexpression of wild-type dynamin had no effect. In contrast, coated pits failed to become constricted and coated vesicles failed to bud in cells overexpressing mutant dynamin so that endocytosis via both transferrin (Tfn) and EGF receptors was potently inhibited. Coated pit assembly, invagination, and the recruitment of receptors into coated pits were unaffected. Other vesicular transport pathways, including Tfn receptor recycling, Tfn receptor biosynthesis, and cathepsin D transport to lysosomes via Golgi-derived coated vesicles, were unaffected. Bulk fluid-phase uptake also continued at the same initial rates as wild type. EM immunolocalization showed that membrane-bound dynamin was specifically associated with clathrin-coated pits on the plasma membrane. Dynamin was also associated with isolated coated vesicles, suggesting that it plays a role in vesicle budding. Like the Drosophila shibire mutant, HeLa cells overexpressing mutant dynamin accumulated long tubules, many of which remained connected to the plasma membrane. We conclude that dynamin is specifically required for endocytic coated vesicle formation, and that its GTP binding and hydrolysis activities are required to form constricted coated pits and, subsequently, for coated vesicle budding.


2001 ◽  
Vol 152 (2) ◽  
pp. 309-324 ◽  
Author(s):  
Elaine Hill ◽  
Jeroen van der Kaay ◽  
C. Peter Downes ◽  
Elizabeth Smythe

Plasma membrane clathrin-coated vesicles form after the directed assembly of clathrin and the adaptor complex, AP2, from the cytosol onto the membrane. In addition to these structural components, several other proteins have been implicated in clathrin-coated vesicle formation. These include the large molecular weight GTPase, dynamin, and several Src homology 3 (SH3) domain–containing proteins which bind to dynamin via interactions with its COOH-terminal proline/arginine-rich domain (PRD). To understand the mechanism of coated vesicle formation, it is essential to determine the hierarchy by which individual components are targeted to and act in coated pit assembly, invagination, and scission. To address the role of dynamin and its binding partners in the early stages of endocytosis, we have used well-established in vitro assays for the late stages of coated pit invagination and coated vesicle scission. Dynamin has previously been shown to have a role in scission of coated vesicles. We show that dynamin is also required for the late stages of invagination of clathrin-coated pits. Furthermore, dynamin must bind and hydrolyze GTP for its role in sequestering ligand into deeply invaginated coated pits. We also demonstrate that the SH3 domain of endophilin, which binds both synaptojanin and dynamin, inhibits both late stages of invagination and also scission in vitro. This inhibition results from a reduction in phosphoinositide 4,5-bisphosphate levels which causes dissociation of AP2, clathrin, and dynamin from the plasma membrane. The dramatic effects of the SH3 domain of endophilin led us to propose a model for the temporal order of addition of endophilin and its binding partner synaptojanin in the coated vesicle cycle.


1997 ◽  
Vol 110 (24) ◽  
pp. 3105-3115 ◽  
Author(s):  
A. Gilbert ◽  
J.P. Paccaud ◽  
J.L. Carpentier

Factors controlling the last stages of clathrin-coated vesicle formation were investigated using an assay allowing direct measurement of the detachment of these vesicles from the plasma membrane. Plasma membranes from cultured cells surface-labelled with 125I-alpha2-macroglobulin (a ligand that preferentially associates with clathrin-coated pits) were isolated by sonication of cells attached to a poly-L-lysine-coated substratum and incubated in the presence of nucleotide(s) +/− cytosol. A significant proportion of the membrane-associated radioactivity was released into the incubation medium in sedimentable form (14x10(6)g). The nucleotide and ligand specificities of this process together with the results of a series of biochemical, morphological and gradient analyses, led to the conclusion that measurement of the released sedimentable radioactivity provides a direct estimate of the formation of clathrin-coated vesicles from clathrin-coated pits. A morphological analysis of quick-frozen replicas of these membranes indicated that only the last stages of clathrin-coated vesicle formation were studied in the assay. Taking advantage of this cell-free system, we demonstrate that membrane-associated cytosolic factors and GTP-binding proteins, noteably dynamin, play a crucial role. Moreover, although these events can occur in the absence of ATP and Ca2+, optimal conditions for the formation of clathrin-coated vesicles require the presence of ATP, GTP and cytosol.


1980 ◽  
Vol 87 (1) ◽  
pp. 132-141 ◽  
Author(s):  
J L Salisbury ◽  
J S Condeelis ◽  
P Satir

Cell surface receptor IgM molecules of cultured human lymlphoblastoid cells (WiL2) patch and redistribute into a cap over the Golgi region of the cell after treatment with multivalent anti-IgM antibodies. During and after the redistribution, ligand-receptor clusters are endocytosed into coated pits and coated vesicles. Morphometric analysis of the distribution of ferritin-labeled ligand at EM resolution reveals the following sequence of events in the endocytosis of cell surface IgM: (a) binding of the multivalent ligand in a diffuse cell surface distribution, (b) clustering of the ligand-receptor complexes, (c) recruitment of clathrin coats to the cytoplasmic surface of the cell membrane opposite ligand-receptor clusters, (d) assembly and (e) internalization of coated vesicles, and (f) delivery of label into a large vesicular compartment, presumably partly lysosomal. Most of the labeled ligand enters this pathway. The recruitment of clathrin coats to the membrane opposite ligand-receptor clusters is sensitive to the calmodulin-directed drug Stelazine (trifluoperazine dihydrochloride). In addition, Stelazine inhibits an alternate pathway of endocytosis that does not involve coated vesicle formation. The actin-directed drug dihydrocytochalasin B has no effect on the recruitment of clathrin to the ligand-receptor clusters and the formation of coated pits and little effect on the alternate pathway, but this drug does interfere with subsequent coated vesicle formation and it inhibits capping. Cortical microfilaments that decorate with heavy meromyosin with constant polarity are observed in association with the coated regions of the plasma membrane and with coated vesicles. SDS-polyacrylamide gel electrophoresis analysis of a coated vesicle preparation isolated from WiL2 cells demonstrates that the major polypeptides in the fraction are a 175-kdalton component that comigrates with calf brain clathrin, a 42-kdalton component that comigrates with rabbit muscle actin and a 18.5-kdalton minor component that comigrates with calmodulin as well as 110-, 70-, 55-, 36-, 30-, and 17-kdalton components. These results clarify the pathways of endocytosis in this cell and suggest functional roles for calmodulin, especially in the formation of clathrin-coated pits, and for actin microfilaments in coated vesicle formation and in capping.


1983 ◽  
Vol 97 (2) ◽  
pp. 499-507 ◽  
Author(s):  
T Kosaka ◽  
K Ikeda

Temperature-induced structural changes in the cortical region of the garland cell, which is considered to be active in endocytosis, were investigated in a temperature-sensitive, single gene mutant of Drosophila melanogaster, shibirets1 (shi) and wild-type (Oregon-R). At 19 degrees C, both shi and wild type showed similar structural features: an irregularly extended network of labyrinthine channels, coated pits and vesicles, tubular elements and alpha vacuoles. Tannic acid (TA) impregnation showed that coated pits comprised approximately 20-25% of the total coated profiles at 19 degrees C in both shi and wild-type. When flies were incubated in a horseradish peroxidase (HRP) solution for 5 min, organelles such as coated profiles, tubular elements, and alpha vacuoles were labeled. In wild-type at 30 degrees C, minor changes were observed--mainly a decrease in the distribution of the labyrinthine channels and an increase in HRP uptake. On the other hand, in shi at 30 degrees C, the labyrinthine channels were much elongated and their network became far more complex, indicating the expansion of the surface area of the cell. Also, the coated profiles were increased in number while the number of tubular elements was decreased considerably. The TA method showed that almost all of the coated profiles were coated pits, coated vesicles being almost completely absent at 30 degrees C in shi. Furthermore, HRP uptake activity was considerably decreased at 30 degrees C. These structural changes, as well as the reduced HRP uptake activity, were reversible when the temperature was lowered to 19 degrees C. The observations suggest that in the garland cell of shi the conversion of coated pits to coated vesicles, that is, membrane pinch-off, is blocked at high temperature.


1994 ◽  
Vol 5 (2) ◽  
pp. 237-252 ◽  
Author(s):  
T C Taylor ◽  
M Kanstein ◽  
P Weidman ◽  
P Melançon

We investigated the role of ADP-ribosylation factors (ARFs) in Golgi function using biochemical and morphological cell-free assays. An ARF-free cytosol produced from soluble Chinese hamster ovary (CHO) extracts supports intra-Golgi transport by a mechanism that is biochemically indistinguishable from control transport reactions: ARF-free transport reactions are NSF-dependent, remain sensitive to the donor Golgi-specific inhibitor ilimaquinone, and exhibit kinetics that are identical to that of control reactions containing ARFs. In contrast, ARF-free cytosol does not support the formation of coated vesicles on Golgi cisternae. However, vesicle formation is reconstituted upon the addition of ARF1. These data suggest that neither soluble ARFs nor coated vesicle formation are essential for transport. We conclude that cell-free intra-Golgi transport proceeds via a coated vesicle-independent mechanism regardless of vesicle formation on Golgi cisternae.


1986 ◽  
Vol 102 (1) ◽  
pp. 48-54 ◽  
Author(s):  
M S Robinson ◽  
B M Pearse

A family of coated vesicle proteins, with molecular weights of approximately 100,000 and designated 100K, has been implicated in both coat assembly and the attachment of clathrin to the vesicle membrane. These proteins were purified from extracts of bovine brain coated vesicles by gel filtration, hydroxylapatite chromatography, and preparative SDS PAGE. Peptide mapping by limited proteolysis indicated that the polypeptides making up the three major 100K bands have distinct amino acid sequences. When four rats were immunized with total 100K protein, each rat responded differently to the different bands, although all four antisera cross-reacted with the 100K proteins of human placental coated vesicles. After affinity purification, two of the antisera were able to detect a 100K band on blots of whole 3T3 cell protein and were used for immunofluorescence, double labeling the cells with either rabbit anti-clathrin or with wheat germ lectin as a Golgi apparatus marker. Both antisera gave staining that was coincident with anti-clathrin, with punctate labeling of the plasma membrane and perinuclear Golgi apparatus labeling. Thus, the 100K proteins are present on endocytic as well as Golgi-derived coated pits and vesicles. The punctate patterns were nearly identical with anti-100K and anti-clathrin, indicating that when vesicles become uncoated, the 100K proteins are removed as well as clathrin. One of the two antisera gave stronger plasma membrane labeling than Golgi apparatus labeling when compared with the anti-clathrin antiserum. The other antiserum gave stronger Golgi apparatus labeling. Although we have as yet no evidence that these two antisera label different proteins on blots of 3T3 cells, they do show differences on blots of bovine brain 100K proteins. This result, although preliminary, raises the possibility that different 100K proteins may be associated with different pathways of membrane traffic.


1980 ◽  
Vol 84 (3) ◽  
pp. 560-583 ◽  
Author(s):  
J Heuser

Fibroblasts apparently ingest low density lipoproteins (LDL) by a selective mechanism of receptor-mediated endocytosis involving the formation of coated vesicles from the plasma membrane. However, it is not known exactly how coated vesicles collect LDL receptors and pinch off from the plasma membrane. In this report, the quick-freeze, deep-etch, rotary-replication method has been applied to fibroblasts; it displays with unusual clarity the coats that appear under the plasma membrane at the start of receptor-mediated endocytosis. These coats appear to be polygonal networks of 7-nm strands or struts arranged into 30-nm polygons, most of which are hexagons but some of which are 5- and 7-sided rings. The proportion of pentagons in each network increases as the coated area of the plasma membrane puckers up from its planar configuration (where the network is mostly hexagons) to its most sharply curved condition as a pinched-off coated vesicle. Coats around the smallest vesicles (which are icosahedrons of hexagons and pentagons) appear only slightly different from "empty coats" purified from homogenized brain, which are less symmetrical baskets containing more pentagons than hexagons. A search for structural intermediates in this coat transformation allows a test of T. Kanaseki and K. Kadota's (1969. J. Cell Biol. 42:202--220.) original idea that an internal rearrangement in this basketwork from hexagons to pentagons could "power" coated vesicle formation. The most noteworthy variations in the typical hexagonal honeycomb are focal juxtapositions of 5- and 7-sided polygons at points of partial contraction and curvature in the basketwork. These appear to precede complete contraction into individual pentagons completely surrounded by hexagons, which is the pattern that characterizes the final spherical baskets around coated vesicles.


1982 ◽  
Vol 30 (9) ◽  
pp. 853-863 ◽  
Author(s):  
C T Lin ◽  
J Garbern ◽  
J Y Wu

The precise cellular and subcellular locations of coated vesicle protein, clathrin, in rat kidney and cerebellum have been visualized by immunocytochemical techniques. In the renal tubular epithelia, clathrin-positive products were found on both free ribosomes and on those attached to rough endoplasmic reticulum (RER) and the nuclear envelope. No clathrin was observed in the cisternae of RER or the Golgi apparatus. Clathrin-positive reaction products could also be seen on coated pits, coated vesicles, Golgi-associated vesicles, basolateral cell membrane, the ground substance, and in the autophagic vacuoles. In cerebellar Purkinje and granule cell bodies, reaction products were seen localized on coated vesicles, on the budding areas from the Golgi-associated membrane and Golgi-associated vesicles. Furthermore, the membrane of the multivesicular body, the bound-ribosomes, and the ground substance were also stained. In the myelinated axon, the clathrin appeared to be concentrated on certain segments and seemed to fill in the space between neurotubules and some vesicles. In certain synaptic terminals clathrin was often seen attached to presynaptic vesicles, presynaptic membrane, and post-synaptic membrane. However, in most mossy fibers, some synaptic vesicles were not stained. These observations suggest that clathrin is synthesized on bound and free ribosomes and discharged into the cytosol where it becomes associated with a variety of ground substances and assembles on coated pits, coated vesicles, Golgi-associated vesicles, presynaptic vesicles, and pre- and postsynaptic membranes. Clathrin may be finally degraded in autophagic vacuoles.


Sign in / Sign up

Export Citation Format

Share Document