Direct measurement of clathrin-coated vesicle formation using a cell-free assay
Factors controlling the last stages of clathrin-coated vesicle formation were investigated using an assay allowing direct measurement of the detachment of these vesicles from the plasma membrane. Plasma membranes from cultured cells surface-labelled with 125I-alpha2-macroglobulin (a ligand that preferentially associates with clathrin-coated pits) were isolated by sonication of cells attached to a poly-L-lysine-coated substratum and incubated in the presence of nucleotide(s) +/− cytosol. A significant proportion of the membrane-associated radioactivity was released into the incubation medium in sedimentable form (14x10(6)g). The nucleotide and ligand specificities of this process together with the results of a series of biochemical, morphological and gradient analyses, led to the conclusion that measurement of the released sedimentable radioactivity provides a direct estimate of the formation of clathrin-coated vesicles from clathrin-coated pits. A morphological analysis of quick-frozen replicas of these membranes indicated that only the last stages of clathrin-coated vesicle formation were studied in the assay. Taking advantage of this cell-free system, we demonstrate that membrane-associated cytosolic factors and GTP-binding proteins, noteably dynamin, play a crucial role. Moreover, although these events can occur in the absence of ATP and Ca2+, optimal conditions for the formation of clathrin-coated vesicles require the presence of ATP, GTP and cytosol.