scholarly journals Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts.

1988 ◽  
Vol 106 (1) ◽  
pp. 87-95 ◽  
Author(s):  
J Pöllänen ◽  
K Hedman ◽  
L S Nielsen ◽  
K Danø ◽  
A Vaheri

We have recently shown that urokinase-type plasminogen activator (u-PA) and plasminogen activator inhibitor type 1 are both found extracellularly beneath cultured human skin fibroblasts and HT-1080 sarcoma cells, but in distinct localizations. Here, the ultrastructural distribution of u-PA was studied using immunoferritin electron microscopy. In HT-1080 cells, u-PA on the extracellular aspect of the plasma membrane was detected at sites of direct contact of the cell with the growth substratum beneath all parts of the ventral cell surface. The ferritin-labeled adhesion plaques, which were enriched in submembraneous microfilaments, were frequently seen at the leading lamellae of the cells as well as in lamellipodia and microspikes. Besides the cell-substratum adhesion plaques, ferritin label was detected at cell-cell contact sites. Double-label immunofluorescence showed a striking colocalization of u-PA and vinculin in both HT-1080 cells and WI-38 lung fibroblasts, which is consistent with u-PA being a focal contact component. The u-PA-containing focal contacts of WI-38 cells had no direct codistribution with fibronectin fibrils. In WI-38 cells made stationary by cultivation in a medium containing 0.5% FCS, vinculin plaques became highly elongated and more centrally located, whereas u-PA immunolabel disappeared from such focal adhesions. These findings show that plasma membrane-associated u-PA is an intrinsic component of focal contacts, where, we propose, it enables directional proteolysis for cell migration and invasion.

1998 ◽  
Vol 275 (1) ◽  
pp. L47-L54 ◽  
Author(s):  
Kimiko Takahashi ◽  
Yasuhide Uwabe ◽  
Yoshio Sawasaki ◽  
Toshio Kiguchi ◽  
Hiroyuki Nakamura ◽  
...  

Human lung microvascular endothelial cells (HLMECs) secreted 1.5–15 times more urokinase-type plasminogen activator (uPA) antigen than human hepatic microvascular endothelial cells, human umbilical vein endothelial cells (HUVECs), angioma endothelial cells, and lung fibroblasts. All of these cells also secreted a 100-fold greater amount of plasminogen activator inhibitor-1 than of uPA antigen, and uPA activities were not detected in the culture medium. The expression of uPA mRNA in HLMECs was higher (100-fold) compared with HUVECs, angioma endothelial cells, and lung fibroblasts. HLMECs secreted uPA antigen on both the luminal and basal sides of the cells. On the other hand, HLMECs secreted a 10- to 15-fold lower amount of tissue-type plasminogen activator than HUVECs, mostly on the luminal side. After stimulation with interleukin (IL)-1β, HLMECs secreted a six- to ninefold amount of uPA antigen. In contrast, no stimulatory effect was observed in HUVECs even under high IL-1β concentrations. The secretion of uPA and plasminogen activator inhibitor-1 from HLMECs was also enhanced by tumor necrosis factor-α and IL-2. These results suggest that HLMECs may contribute not only to the patency of lung vessels but also to the maintenance of alveolar functions through the production and secretion of uPA, especially in the presence of inflammatory cytokines.


1996 ◽  
Vol 134 (6) ◽  
pp. 1563-1571 ◽  
Author(s):  
G Deng ◽  
S A Curriden ◽  
S Wang ◽  
S Rosenberg ◽  
D J Loskutoff

Induction of the urokinase type plasminogen activator receptor (uPAR) promotes cell adhesion through its interaction with vitronectin (VN) in the extracellular matrix, and facilitates cell migration and invasion by localizing uPA to the cell surface. We provide evidence that this balance between cell adhesion and cell detachment is governed by PA inhibitor-1 (PAI-1). First, we demonstrate that uPAR and PAI-1 bind to the same site in VN (i.e., the amino-terminal somatomedin B domain; SMB), and that PAI-1 competes with uPAR for binding to SMB. Domain swapping and mutagenesis studies indicate that the uPAR-binding sequence is located within the central region of the SMB domain, a region previously shown to contain the PAI-1-binding motif. Second, we show that PAI-1 dissociates bound VN from uPAR and detaches U937 cells from their VN substratum. This PAI-1 mediated release of cells from VN appears to occur independently of its ability to function as a protease inhibitor, and may help to explain why high PAI-1 levels indicate a poor prognosis for many cancers. Finally, we show that uPA can rapidly reverse this effect of PAI-1. Taken together, these results suggest a dynamic regulatory role for PAI-1 and uPA in uPAR-mediated cell adhesion and release.


2003 ◽  
Vol 162 (5) ◽  
pp. 789-794 ◽  
Author(s):  
Justin Sturge ◽  
Dirk Wienke ◽  
Lucy East ◽  
Gareth E. Jones ◽  
Clare M. Isacke

Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) play an important role in cell guidance and chemotaxis during normal and pathological events. uPAR is GPI-anchored and the mechanism by which it transmits intracellular polarity cues across the plasma membrane during directional sensing has not been elucidated. The constitutively recycling endocytic receptor Endo180 forms a trimolecular complex with uPAR in the presence of uPA, hence its alternate name uPAR-associated protein. Here, we demonstrate that Endo180 is a general promoter of random cell migration and has a more specific function in cell chemotaxis up a uPA gradient. Endo180 expression was demonstrated to enhance uPA-mediated filopodia production and promote rapid activation of Cdc42 and Rac. Expression of a noninternalizing Endo180 mutant revealed that promotion of random cell migration requires receptor endocytosis, whereas the chemotactic response to uPA does not. From these studies, we conclude that Endo180 is a crucial link between uPA–uPAR and setting of the internal cellular compass.


Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 808-815 ◽  
Author(s):  
T Plesner ◽  
M Ploug ◽  
V Ellis ◽  
E Ronne ◽  
G Hoyer-Hansen ◽  
...  

Abstract The cellular receptor for urokinase-type plasminogen activator (uPAR) binds pro-urokinase (pro-uPA) and facilitates its conversion to enzymatically active urokinase (uPA). uPA in turn activates surface-bound plasminogen to plasmin, a process of presumed importance for a number of biologic processes including cell migration and resolution of thrombi. We have previously shown that uPAR is expressed on the plasma membrane of circulating neutrophils, and we now report that stimulation with phorbol myristate acetate (PMA), FMLP, or tumor necrosis factor-alpha results in a rapid increase in the expression of uPAR. This process is accompanied by an increased cell-associated plasminogen activation after preincubation of neutrophils with pro-uPA in vitro. By subcellular fractionation of unstimulated neutrophils, 50% of uPAR is recovered in fractions containing latent alkaline phosphatase, corresponding to an intracellular compartment of easily mobilizable secretory vesicles distinct from both primary and specific granules, whereas the remaining 50% of uPAR is associated with a compartment eluting close to the specific granules. In contrast, the ligand pro-uPA is primarily (approximately 80%) found in the specific granules, but small amounts of pro-uPA/uPA (approximately 20%) coelute with latent alkaline phosphatase. Stimulation of neutrophils with FMLP results in translocation of uPAR as well as of pro-uPA from the secretory vesicles, whereas stimulation with PMA is required to translocate material from specific granules. Flow cytometry of neutrophils saturated with exogenous diisopropyl fluorophosphate-uPA shows a large excess (approximately 90%) of unoccupied uPAR on resting as well as FMLP- and PMA-stimulated neutrophils, suggesting a possible role for exogenous pro-uPA in providing neutrophils with a potential for plasminogen activation. These processes may be important for neutrophil extravasation and migration through extracellular matrix and for the contribution of neutrophils to resolution of thrombi.


2016 ◽  
Vol 44 (01) ◽  
pp. 177-195 ◽  
Author(s):  
Ming-Ju Hsieh ◽  
Chao-Bin Yeh ◽  
Hui-Ling Chiou ◽  
Ming-Chang Hsieh ◽  
Shun-Fa Yang

High mortality and morbidity rates for hepatocellular carcinoma (HCC) in Taiwan primarily result from uncontrolled tumor metastasis. In our previous studies, we have reported that Dioscorea nipponica Makino extract (DNE) has anti-metastasis effects on human oral cancer cells. However, the effect of DNE on hepatoma metastasis have not been thoroughly investigated and remains poorly understood. To determine the effects of DNE on the migration and invasion in HCC cells we used a wound healing model, Boyden chamber assays, gelatin/casein zymography and Western blotting. Transcriptional levels of matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (u-PA) were detected by real-time PCR and promoter assays. In this study, DNE treatment significantly inhibited the migration/invasion capacities of Huh7 cell lines. The results of gelatin/casein zymography and Western blotting revealed that the activities and protein levels of the MMP-9 and u-PA were inhibited by DNE. Tests of the mRNA levels, real-time PCR, and promoter assays evaluated the inhibitory effects of DNE on u-PA expression in human hepatoma cells. A chromatin immunoprecipitation (ChIP) assay showed not only that DNE inhibits u-PA expression, but also the inhibitory effects were associated with the down-regulation of the transcription factors of NF-[Formula: see text]B and SP-1 signaling pathways. Western blot analysis also showed that DNE inhibits PI3K and phosphorylation of Akt. In conclusion, these results show that u-PA expression may be a potent therapeutic target in the DNE-mediated suppression of HCC invasion/migration. DNE may have potential use as a chemo-preventive agent against liver cancer metastasis.


Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 808-815 ◽  
Author(s):  
T Plesner ◽  
M Ploug ◽  
V Ellis ◽  
E Ronne ◽  
G Hoyer-Hansen ◽  
...  

The cellular receptor for urokinase-type plasminogen activator (uPAR) binds pro-urokinase (pro-uPA) and facilitates its conversion to enzymatically active urokinase (uPA). uPA in turn activates surface-bound plasminogen to plasmin, a process of presumed importance for a number of biologic processes including cell migration and resolution of thrombi. We have previously shown that uPAR is expressed on the plasma membrane of circulating neutrophils, and we now report that stimulation with phorbol myristate acetate (PMA), FMLP, or tumor necrosis factor-alpha results in a rapid increase in the expression of uPAR. This process is accompanied by an increased cell-associated plasminogen activation after preincubation of neutrophils with pro-uPA in vitro. By subcellular fractionation of unstimulated neutrophils, 50% of uPAR is recovered in fractions containing latent alkaline phosphatase, corresponding to an intracellular compartment of easily mobilizable secretory vesicles distinct from both primary and specific granules, whereas the remaining 50% of uPAR is associated with a compartment eluting close to the specific granules. In contrast, the ligand pro-uPA is primarily (approximately 80%) found in the specific granules, but small amounts of pro-uPA/uPA (approximately 20%) coelute with latent alkaline phosphatase. Stimulation of neutrophils with FMLP results in translocation of uPAR as well as of pro-uPA from the secretory vesicles, whereas stimulation with PMA is required to translocate material from specific granules. Flow cytometry of neutrophils saturated with exogenous diisopropyl fluorophosphate-uPA shows a large excess (approximately 90%) of unoccupied uPAR on resting as well as FMLP- and PMA-stimulated neutrophils, suggesting a possible role for exogenous pro-uPA in providing neutrophils with a potential for plasminogen activation. These processes may be important for neutrophil extravasation and migration through extracellular matrix and for the contribution of neutrophils to resolution of thrombi.


Zygote ◽  
2015 ◽  
Vol 24 (2) ◽  
pp. 230-235 ◽  
Author(s):  
Daniela C. García ◽  
Dora C. Miceli ◽  
Gabriela Rizo ◽  
Elina V. García ◽  
Pablo A. Valdecantos ◽  
...  

SummaryUrokinase-type plasminogen activator (uPA) is a serine protease involved in extracellular matrix remodeling through plasmin generation. uPA usually binds to its receptor, uPAR, which is anchored to the plasma membrane through a glycosylphosphatidylinositol anchor. uPA/uPAR binding increases proteolytic activity in the neighborhood of the cells containing uPAR and activates intracellular signaling pathways involved in extracellular matrix remodeling, cell migration and proliferation. The aim of this work was to study the expression of uPA, uPAR and plasminogen activator inhibitor-1 (PAI-1) in immature and in vitro matured bovine cumulus–oocyte complexes (COCs). uPA is only expressed in the cumulus cells of immature and in vitro matured COCs, while uPAR and PAI-1 are expressed in both the cumulus cells and the immature and in vitro matured oocytes. In addition, uPAR protein was localized by confocal microscopy in the plasma membrane of oocytes and cumulus cells of immature COCs. Results from this research led us to hypothesize that the uPA/uPAR interaction could cause the local production of uPA-mediated plasmin over oocyte and cumulus cell surface; plasmin formation could also be regulated by PAI-1.


Sign in / Sign up

Export Citation Format

Share Document