Effect of prostaglandin E2on urokinase‐type plasminogen activator production by human lung fibroblasts

2009 ◽  
Vol 69 (2) ◽  
pp. 225-233 ◽  
Author(s):  
Tomotada Odaka ◽  
Katsuyuki Kobayashi ◽  
Kimiko Takahashi ◽  
Hiroyuki Nakamura ◽  
Takeshi Matsuoka
1998 ◽  
Vol 275 (1) ◽  
pp. L47-L54 ◽  
Author(s):  
Kimiko Takahashi ◽  
Yasuhide Uwabe ◽  
Yoshio Sawasaki ◽  
Toshio Kiguchi ◽  
Hiroyuki Nakamura ◽  
...  

Human lung microvascular endothelial cells (HLMECs) secreted 1.5–15 times more urokinase-type plasminogen activator (uPA) antigen than human hepatic microvascular endothelial cells, human umbilical vein endothelial cells (HUVECs), angioma endothelial cells, and lung fibroblasts. All of these cells also secreted a 100-fold greater amount of plasminogen activator inhibitor-1 than of uPA antigen, and uPA activities were not detected in the culture medium. The expression of uPA mRNA in HLMECs was higher (100-fold) compared with HUVECs, angioma endothelial cells, and lung fibroblasts. HLMECs secreted uPA antigen on both the luminal and basal sides of the cells. On the other hand, HLMECs secreted a 10- to 15-fold lower amount of tissue-type plasminogen activator than HUVECs, mostly on the luminal side. After stimulation with interleukin (IL)-1β, HLMECs secreted a six- to ninefold amount of uPA antigen. In contrast, no stimulatory effect was observed in HUVECs even under high IL-1β concentrations. The secretion of uPA and plasminogen activator inhibitor-1 from HLMECs was also enhanced by tumor necrosis factor-α and IL-2. These results suggest that HLMECs may contribute not only to the patency of lung vessels but also to the maintenance of alveolar functions through the production and secretion of uPA, especially in the presence of inflammatory cytokines.


1988 ◽  
Vol 106 (1) ◽  
pp. 87-95 ◽  
Author(s):  
J Pöllänen ◽  
K Hedman ◽  
L S Nielsen ◽  
K Danø ◽  
A Vaheri

We have recently shown that urokinase-type plasminogen activator (u-PA) and plasminogen activator inhibitor type 1 are both found extracellularly beneath cultured human skin fibroblasts and HT-1080 sarcoma cells, but in distinct localizations. Here, the ultrastructural distribution of u-PA was studied using immunoferritin electron microscopy. In HT-1080 cells, u-PA on the extracellular aspect of the plasma membrane was detected at sites of direct contact of the cell with the growth substratum beneath all parts of the ventral cell surface. The ferritin-labeled adhesion plaques, which were enriched in submembraneous microfilaments, were frequently seen at the leading lamellae of the cells as well as in lamellipodia and microspikes. Besides the cell-substratum adhesion plaques, ferritin label was detected at cell-cell contact sites. Double-label immunofluorescence showed a striking colocalization of u-PA and vinculin in both HT-1080 cells and WI-38 lung fibroblasts, which is consistent with u-PA being a focal contact component. The u-PA-containing focal contacts of WI-38 cells had no direct codistribution with fibronectin fibrils. In WI-38 cells made stationary by cultivation in a medium containing 0.5% FCS, vinculin plaques became highly elongated and more centrally located, whereas u-PA immunolabel disappeared from such focal adhesions. These findings show that plasma membrane-associated u-PA is an intrinsic component of focal contacts, where, we propose, it enables directional proteolysis for cell migration and invasion.


1992 ◽  
Vol 263 (4) ◽  
pp. L487-L494 ◽  
Author(s):  
S. Idell ◽  
C. Zwieb ◽  
J. Boggaram ◽  
D. Holiday ◽  
A. R. Johnson ◽  
...  

Fibrin gels form within the alveolar and interstitial compartments of the injured lung, and fibroblasts invade and facilitate organization of these transitional gels. We studied the effects of transforming growth factor-beta (TGF-beta) and tumor necrosis factor-alpha (TNF-alpha) on fibrinolytic and procoagulant activities of human lung fibroblasts (HLF) to determine their capacity to regulate pulmonary fibrin deposition. Fibrinolytic activity of cell lysates and media (n = 6 HLF cultures) were uniformly depressed by TGF-beta or TNF-alpha. In dose and time-course studies, HLF plasminogen activator inhibitor-1 (PAI-1) was increased by TGF-beta, whereas TNF-alpha induced release of PAI-1 into the media. HLF and media urokinase concentrations were depressed by TGF-beta, whereas urokinase was unchanged or increased by TNF-alpha. Tissue plasminogen activator was mainly cell associated and unchanged by TGF-beta or TNF-alpha. HLF antiplasmin activity was not detected. Plasma recalcification times of HLF media were decreased by TNF-alpha but unchanged by TGF-beta. These studies suggest that TGF-beta and TNF-alpha impair the ability of HLF to degrade fibrin by disturbing the balance of HLF plasminogen activators and PAI and that these cytokines concurrently leave unchanged or increase the capacity of HLF to initiate fibrin formation. Cytokines likely to occur in the injured lung induce abnormalities of fibrinolysis in HLF from adults; such abnormalities favor extravascular fibrin deposition, a characteristic feature of alveolitis.


1995 ◽  
Vol 310 (1) ◽  
pp. 345-352 ◽  
Author(s):  
L R Lund ◽  
V Ellis ◽  
E Rønne ◽  
C Pyke ◽  
K Danø

The receptor for urokinase-type plasminogen activator (uPAR) is an integral membrane protein that specifically binds urokinase-type plasminogen activator (uPA) and plays a crucial role in cell surface plasmin generation. We have previously found that transforming growth factor-beta, type 1 (TGF-beta 1), increases uPAR gene transcription in the human lung carcinoma cell line A549 and now report that also epidermal growth factor (EGF) and the tumour promoter phorbol 12-myristate 13-acetate (PMA) cause increased uPAR transcription and that PMA and TGF-beta 1 in addition increase the stability of uPAR mRNA, while EGF has no effect on this parameter. All three compounds also increase the uPAR protein level, as measured by cell-binding experiments with radiolabelled ligand. The increase in uPAR protein level was however considerably lower with all three compounds than the increase in mRNA level, suggesting that they also exert a translational or post-translational control. Accompanying the increase in the number of uPAR molecules there was a proportional decrease in their ligand-binding affinity, the mechanism of which is unknown. Platelet-derived growth factor, basic fibroblast growth factor and cyclic AMP analogues did not induce any change in the uPAR mRNA level in A549 cells. Previous studies have shown that expression of uPA and its type-1 inhibitor is regulated by a variety of cytokines in a cell-specific manner. The present study indicates that cytokines in addition influence cell surface plasminogen activation by regulating uPAR expression.


2001 ◽  
Vol 120 (5) ◽  
pp. A599-A600 ◽  
Author(s):  
L HERSZENYI ◽  
F FARINATI ◽  
G ISTVAN ◽  
M PAOLI ◽  
G ROVERONI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document