scholarly journals Identification of the major physiologic phosphorylation site of human keratin 18: potential kinases and a role in filament reorganization.

1994 ◽  
Vol 127 (1) ◽  
pp. 161-171 ◽  
Author(s):  
N O Ku ◽  
M B Omary

There is ample in vitro evidence that phosphorylation of intermediate filaments, including keratins, plays an important role in filament reorganization. In order to gain a better understanding of the function of intermediate filament phosphorylation, we sought to identify the major phosphorylation site of human keratin polypeptide 18 (K18) and study its role in filament assembly or reorganization. We generated a series of K18 ser-->ala mutations at potential phosphorylation sites, followed by expression in insect cells and comparison of the tryptic 32PO4-labeled patterns of the generated constructs. Using this approach, coupled with Edman degradation of the 32PO4-labeled tryptic peptides, and comparison with tryptic peptides analyzed after labeling normal human colonic tissues, we identified ser-52 as the major K18 physiologic phosphorylation site. Ser-52 in K18 is not glycosylated and matches consensus sequences for phosphorylation by CAM kinase, S6 kinase and protein kinase C, and all these kinases can phosphorylate K18 in vitro predominantly at that site. Expression of K18 ser-52-->ala mutant in mammalian cells showed minimal phosphorylation but no distinguishable difference in filament assembly when compared with wild-type K18. In contrast, the ser-52 mutation played a clear but nonexclusive role in filament reorganization, based on analysis of filament alterations in cells treated with okadaic acid or arrested at the G2/M stage of the cell cycle. Our results show that ser-52 is the major physiologic phosphorylation site of human K18 in interphase cells, and that its phosphorylation may play an in vivo role in filament reorganization.

1997 ◽  
Vol 17 (12) ◽  
pp. 7362-7374 ◽  
Author(s):  
J A Diehl ◽  
C J Sherr

Cyclins contain two characteristic cyclin folds, each consisting of five alpha-helical bundles, which are connected to one another by a short linker peptide. The first repeat makes direct contact with cyclin-dependent kinase (CDK) subunits in assembled holoenzyme complexes, whereas the second does not contribute directly to the CDK interface. Although threonine 156 in mouse cyclin D1 is predicted to lie at the carboxyl terminus of the linker peptide that separates the two cyclin folds and is buried within the cyclin subunit, mutation of this residue to alanine has profound effects on the behavior of the derived cyclin D1-CDK4 complexes. CDK4 in complexes with mutant cyclin D1 (T156A or T156E but not T156S) is not phosphorylated by recombinant CDK-activating kinase (CAK) in vitro, fails to undergo activating T-loop phosphorylation in vivo, and remains catalytically inactive and unable to phosphorylate the retinoblastoma protein. Moreover, when it is ectopically overexpressed in mammalian cells, cyclin D1 (T156A) assembles with CDK4 in the cytoplasm but is not imported into the cell nucleus. CAK phosphorylation is not required for nuclear transport of cyclin D1-CDK4 complexes, because complexes containing wild-type cyclin D1 and a CDK4 (T172A) mutant lacking the CAK phosphorylation site are efficiently imported. In contrast, enforced overexpression of the CDK inhibitor p21Cip1 together with mutant cyclin D1 (T156A)-CDK4 complexes enhanced their nuclear localization. These results suggest that cyclin D1 (T156A or T156E) forms abortive complexes with CDK4 that prevent recognition by CAK and by other cellular factors that are required for their nuclear localization. These properties enable ectopically overexpressed cyclin D1 (T156A), or a more stable T156A/T286A double mutant that is resistant to ubiquitination, to compete with endogenous cyclin D1 in mammalian cells, thereby mobilizing CDK4 into cytoplasmic, catalytically inactive complexes and dominantly inhibiting the ability of transfected NIH 3T3 fibroblasts to enter S phase.


2000 ◽  
Vol 350 (2) ◽  
pp. 453-461 ◽  
Author(s):  
Derek A. JELLINEK ◽  
Andy C. CHANG ◽  
Martin R. LARSEN ◽  
Xin WANG ◽  
Phillip J. ROBINSON ◽  
...  

Stanniocalcin 1 (STC1) and stanniocalcin 2 (STC2) are two recently identified mammalian peptide hormones. STC1 plays a role in calcium and phosphate homoeostasis, while the role of STC2 is unknown. We examined a human fibrosarcoma cell line, HT1080, that has high steady-state STC1 and STC2 mRNA levels, to determine whether these proteins are secreted. Following incubation of HT1080 cells with 32P, labelled STC1 and STC2 were found to be secreted into the medium. STC1 was phosphorylated in vitro by protein kinase C (PKC). In vitro and in vivo phosphorylation both occurred exclusively on serine and the phosphopeptide maps were similar, suggesting that PKC might be the in vivo kinase. STC2 was phosphorylated in vitro by casein kinase II (CK2), in vitro and in vivo phosphorylation were exclusively on serine and the phosphopeptide maps were indistinguishable. Phosphorylation of STC2 in intact cells resulted from the action of an ecto-protein kinase, since exogenous STC2 was phosphorylated by HT1080 cells and no phosphorylated STC2 was detectable inside the cells. The ectokinase activity was abolished by heparin and GTP could substitute for ATP as the phosphate donor, indicative of an ecto-CK2-like activity. The in vitro CK2 phosphorylation site was shown by matrix-assisted laser-desorption ionization–time-of-flight MS to be a single serine located between Ser-285 and Ser-298 in the C-terminal region of STC2. This is the first report of the secretion of STC1 or STC2 from mammalian cells. We conclude that these human fibrosarcoma cells express both STC1 and STC2 as secreted phosphoproteins in vivo, with STC2 being phosphorylated by an ecto-CK2-like enzyme.


1958 ◽  
Vol 108 (6) ◽  
pp. 945-956 ◽  
Author(s):  
Theodore T. Puck ◽  
Steven J. Cieciura ◽  
Arthur Robinson

A methodology designed to eliminate mitotic inhibitor action and involving use of pretested fetal calf serum and careful pH and temperature control has been described by which cells from normal human and animal tissue can be maintained in active growth for long periods in vitro without development of aneuploidy. By means of this procedure, it is possible reliably to establish cell cultures from minute skin biopsies which can be taken from any individual. Clones of mammalian cells with chromosomal markers have been isolated by this means from x-irradiated non-irradiated cell cultures. Application of these techniques to chromosome delineation in large numbers of human subjects; determination of chromosomal sex in patients; spontaneuos and induced genetic changes in somatic mammalian cells in vivo and in vitro; comparison of metabolic differences between normal and cancerous cells and other problems have been indicated.


1995 ◽  
Vol 131 (5) ◽  
pp. 1291-1301 ◽  
Author(s):  
J Liao ◽  
L A Lowthert ◽  
N O Ku ◽  
R Fernandez ◽  
M B Omary

Phosphorylation of keratin polypeptides 8 and 18 (K8/18) and other intermediate filament proteins results in their reorganization in vitro and in vivo. In order to study functional aspects of human K18 phosphorylation, we generated and purified a polyclonal antibody (termed 3055) that specifically recognizes a major phosphorylation site (ser52) of human K18 but not dephosphorylated K18 or a ser52-->ala K18 mutant. Pulse-chase experiments followed by immunoprecipitation and peptide mapping of in vivo 32PO4-labeled K8/18 indicated that the overall phosphorylation turnover rate is faster for K18 versus K8, and that ser52 of K18 is a highly dynamic phosphorylation site. Isoelectric focusing of 32PO4 labeled K18 followed by immunoblotting with 3055 showed that the major phosphorylated K18 species contain ser52 phosphorylation but that some K18 molecules exist that are preferentially phosphorylated on K18 sites other than ser52. Immunoblotting of total cell lysates obtained from cells at different stages of the cell cycle showed that ser52 phosphorylation increases three to fourfold during the S and G2/M phases of the cell cycle. Immunofluorescence staining of cells at different stages of mitosis, using 3055 or other antibodies that recognize the total keratin pool, resulted in preferential binding of the 3055 antibody to the reorganized keratin fraction. Staining of human tissues or tissues from transgenic mice that express human K18 showed that the phospho-ser52 K18 species are located preferentially in the basolateral and apical domains in the liver and pancreas, respectively, but no preferential localization was noted in other simple epithelial organs examined. Our results support a model whereby phosphorylated intermediate filaments are localized in specific cellular domains depending on the tissue type and site(s) of phosphorylation. In addition, ser52 of human K18 is a highly dynamic phosphorylation site that undergoes modulation during the S and G2/M phases of the cell cycle in association with filament reorganization.


1995 ◽  
Vol 108 (6) ◽  
pp. 2145-2152
Author(s):  
Y. Nagai ◽  
S. Kaneda ◽  
K. Nomura ◽  
H. Yasuda ◽  
T. Seno ◽  
...  

The ubiquitin-activating enzyme (E1) is the first enzyme in the pathway leading to formation of ubiquitin-protein conjugates. E1 was found to be phosphorylated in cells of a mouse mammary carcinoma cell line, FM3A. Peptide mapping of trypsin digests of labeled E1 indicated that two oligopeptides were mainly phosphorylated in vivo. The same oligopeptides were also labeled in vitro on Cdc2 kinase-mediated phosphorylation of E1, affinity-purified from the same cell line. The Cdc2 kinase is a key enzyme playing a pivotal role in G2/M transition in the cell cycle. The phosphorylation of one of the two oligopeptides was prominent at the G2/M phase of the cell cycle, and dependent upon the Cdc2 kinase activity in vivo since it was significantly reduced in tsFT210, a mutant cell line deficient in Cdc2 kinase. Mutation analysis indicated that the serine residue at the fourth position of the E1 enzyme was a phosphorylation site of Cdc2 kinase. These findings suggest that E1 is a target of Cdc2 kinase in the cell, implying that the ubiquitin system may be dynamically involved in cell cycle control through phosphorylation of this key enzyme.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


Author(s):  
Gustav Ofosu

Platinum-thymine has been found to be a potent antitumor agent, which is quite soluble in water, and lack nephrotoxicity as the dose-limiting factor. The drug has been shown to interact with DNA and inhibits DNA, RNA and protein synthesis in mammalian cells in vitro. This investigation was undertaken to elucidate the cytotoxic effects of piatinum-thymine on sarcoma-180 cells in vitro ultrastructurally, Sarcoma-180 tumor bearing mice were treated with intraperitoneal injection of platinum-thymine 40mg/kg. A concentration of 60μg/ml dose of platinum-thymine was used in in vitro experiments. Treatments were at varying time intervals of 3, 7 and 21 days for in vivo experiments, and 30, 60 and 120 min., 6, 12, and 24th in vitro. Controls were not treated with platinum-thymine.Electron microscopic analyses of the treated cells in vivo and in vitro showed drastic cytotoxic effect.


2000 ◽  
Vol 33 (4) ◽  
pp. 601-608 ◽  
Author(s):  
Shwu-Bin Lin ◽  
Li-Ching Wu ◽  
Siao-Ling Huang ◽  
Hui-Lun Hsu ◽  
Sung-Hwa Hsieh ◽  
...  

1992 ◽  
Vol 67 (01) ◽  
pp. 060-062 ◽  
Author(s):  
J Harsfalvi ◽  
E Tarcsa ◽  
M Udvardy ◽  
G Zajka ◽  
T Szarvas ◽  
...  

Summaryɛ(γ-glutamyl)lysine isodipeptide has been detected in normal human plasma by a sensitive HPLC technique in a concentration of 1.9-3.6 μmol/1. Incubation of in vitro clotted plasma at 37° C for 12 h resulted in an increased amount of isodipeptide, and there was no further significant change when streptokinase was also present. Increased in vivo isodipeptide concentrations were also observed in hypercoagulable states and during fibrinolytic therapy.


2018 ◽  
Author(s):  
Noor H. Dashti ◽  
Rufika S. Abidin ◽  
Frank Sainsbury

Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages have been developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both <i>in vitro</i> and <i>in vivo</i> cell engineering. However, there is a lack of platforms in bionanotechnology that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for <i>in vivo</i> self-sorting of cargo-linked capsomeres of the Murine polyomavirus (MPyV) major coat protein that enables controlled encapsidation of guest proteins by <i>in vitro</i> self-assembly. Using Förster resonance energy transfer (FRET) we demonstrate the flexibility in this system to support co-encapsidation of multiple proteins. Complementing these ensemble measurements with single particle analysis by super-resolution microscopy shows that the stochastic nature of co-encapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable co-encapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.


Sign in / Sign up

Export Citation Format

Share Document