scholarly journals Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle.

1995 ◽  
Vol 128 (6) ◽  
pp. 1163-1172 ◽  
Author(s):  
D R Robinson ◽  
T Sherwin ◽  
A Ploubidou ◽  
E H Byard ◽  
K Gull

Trypanosoma brucei has a precisely ordered microtubule cytoskeleton whose morphogenesis is central to cell cycle events such as organelle positioning, segregation, mitosis, and cytokinesis. We have defined microtubule polarity and show the + ends of the cortical microtubules to be at the posterior end of the cell. Measurements of organelle positions through the cell cycle reveal a high degree of coordinate movement and a relationship with overall cell extension. Quantitative analysis of the segregation of the replicated mitochondrial genome (the kinetoplast) by the flagellar basal bodies identifies a new G2 cell cycle event marker. The subsequent mitosis then positions one "daughter" nucleus into the gap between the segregated basal bodies/kinetoplasts. The anterior daughter nucleus maintains its position relative to the anterior of the cell, suggesting an effective yet cryptic nuclear positioning mechanism. Inhibition of microtubule dynamics by rhizoxin results in a phenomenon whereby cells, which have segregated their kinetoplasts yet are compromised in mitosis, cleave into a nucleated portion and a flagellated, anucleate, cytoplast. We term these cytoplasts "zoids" and show that they contain the posterior (new) flagellum and associated basal-body/kinetoplast complex. Examination of zoids suggests a role for the flagellum attachment zone (FAZ) in defining the position for the axis of cleavage in trypanosomes. Progression through cytokinesis, (zoid formation) while mitosis is compromised, suggests that the dependency relationships leading to the classical cell cycle check points may be altered in trypanosomes, to take account of the need to segregate two unit genomes (nuclear and mitochondrial) in this cell.

2013 ◽  
Vol 24 (9) ◽  
pp. 1321-1333 ◽  
Author(s):  
Ana Lozano-Núñez ◽  
Kyojiro N. Ikeda ◽  
Thomas Sauer ◽  
Christopher L. de Graffenried

Polo-like kinases are important regulators of cell division, playing diverse roles in mitosis and cytoskeletal inheritance. In the parasite Trypanosoma brucei, the single PLK homologue TbPLK is necessary for the assembly of a series of essential organelles that position and adhere the flagellum to the cell surface. Previous work relied on RNA interference or inhibitors of undefined specificity to inhibit TbPLK, both of which have significant experimental limitations. Here we use an analogue-sensitive approach to selectively and acutely inhibit TbPLK. T. brucei cells expressing only analogue-sensitive TbPLK (TbPLKas) grow normally, but upon treatment with inhibitor develop defects in flagellar attachment and cytokinesis. TbPLK cannot migrate effectively when inhibited and remains trapped in the posterior of the cell throughout the cell cycle. Using synchronized cells, we show that active TbPLK is a direct requirement for the assembly and extension of the flagellum attachment zone, which adheres the flagellum to the cell surface, and for the rotation of the duplicated basal bodies, which positions the new flagellum so that it can extend without impinging on the old flagellum. This approach should be applicable to the many kinases found in the T. brucei genome that lack an ascribed function.


1989 ◽  
Vol 93 (3) ◽  
pp. 491-500 ◽  
Author(s):  
A. Woods ◽  
T. Sherwin ◽  
R. Sasse ◽  
T.H. MacRae ◽  
A.J. Baines ◽  
...  

The detergent-insoluble T. brucei cytoskeleton consists of several morphologically distinct regions and organelles, many of which are detectable only by electron microscopy. We have produced a set of monoclonal antibodies that define each structural component of this highly ordered cytoskeleton. The monoclonal antibodies were selected by cloning of hybridomas produced from mice injected with complex mixtures of proteins of either the cytoskeleton itself or salt extracts thereof. Four antibodies define particular tubulin isotypes and locate the microtubules of the axoneme and sub-pellicular array; two antibodies recognize the flagellum attachment zone; one recognizes the paraflagellar rod and another the basal bodies. Finally, one antibody defines a detergent-insoluble component of the nucleus. The antigens detected by each monoclonal antibody have been analysed by immunofluorescence microscopy, immunogold electron microscopy and Western blotting.


We have analysed the timing and order of events occurring within the cell division cycle of Trypanosoma brucei . Cells in the earliest stages of the cell cycle possess a single copy of three major organelles: the nucleus, the kinetoplast and the flagellum. The first indication of progress through the cell cycle is the elongation of the pro-basal body lying adjacent to the mature basal body subtending the flagellum. This newly elongated basal body occupies a posterior position within the cell when it initiates growth of the new daughter flagellum. Genesis of two new pro-basal bodies occurs only after growth of the new daughter flagellum has been initiated. Extension of the new flagellum, together with the paraflagellar rod, then continues throughout a major portion of the cell cycle. During this period of flagellum elongation, kinetoplast division occurs and the two kinetoplasts, together with the two flagellar basal bodies, then move apart within the cell. Mitosis is then initiated and a complex pattern of organelle positions is achieved whereby a division plane runs longitudinally through the cell such that each daughter ultimately receives a single nucleus, kinetoplast and flagellum. These events have been described from observations of whole cytoskeletons by transmission electron microscopy together with detection of particular organelles by fluorescence microscopy. The order and timing of events within the cell cycle has been derived from analyses of the proportion of a given cell type occurring within an exponentially growing culture.


2010 ◽  
Vol 9 (5) ◽  
pp. 705-716 ◽  
Author(s):  
Zhi Li ◽  
Takashi Umeyama ◽  
Ziyin Li ◽  
Ching C. Wang

ABSTRACT Polo-like kinase in Trypanosoma brucei (TbPLK) is confined to the flagellum attachment zone (FAZ) and regulates only cytokinetic initiation. However, it apparently diffuses into the cytoplasm before the trans-localization of chromosomal passenger complex (CPC) from the midzone of central spindle to FAZ, which is known to be required for initiating cytokinesis. Synchronized T. brucei procyclic cells treated with a TbPLK inhibitor, GW843682X (GW), in late S phase were found to go through a full cell cycle at a normal pace before being arrested at cytokinetic initiation in the second cycle. However, synchronized cells treated with GW in G1 phase were arrested at cytokinetic initiation within the first cell cycle, suggesting that inhibition of TbPLK at its emergence blocks cytokinesis within the same cell cycle. To rule out potential off-target effects from GW, TbPLK RNA interference (RNAi) was induced to deplete TbPLK, and the progression of synchronized cells from late S phase was also found to be arrested at cytokinetic initiation within the first cell cycle. Apparently, TbPLK has accomplished its role in guiding cytokinesis before the late S phase, presumably by phosphorylating a certain substrate(s) during S phase, which may play a critical role in initiating the subsequent cytokinesis.


2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Madison Atkins ◽  
Jiří Týč ◽  
Shahaan Shafiq ◽  
Manu Ahmed ◽  
Eloïse Bertiaux ◽  
...  

Cilia and flagella are required for cell motility and sensing the external environment and can vary in both length and stability. Stable flagella maintain their length without shortening and lengthening and are proposed to “lock” at the end of growth, but molecular mechanisms for this lock are unknown. We show that CEP164C contributes to the locking mechanism at the base of the flagellum in Trypanosoma brucei. CEP164C localizes to mature basal bodies of fully assembled old flagella, but not to growing new flagella, and basal bodies only acquire CEP164C in the third cell cycle after initial assembly. Depletion of CEP164C leads to dysregulation of flagellum growth, with continued growth of the old flagellum, consistent with defects in a flagellum locking mechanism. Inhibiting cytokinesis results in CEP164C acquisition on the new flagellum once it reaches the old flagellum length. These results provide the first insight into the molecular mechanisms regulating flagella growth in cells that must maintain existing flagella while growing new flagella.


2013 ◽  
Vol 24 (12) ◽  
pp. 1947-1963 ◽  
Author(s):  
Christopher L. de Graffenried ◽  
Dorothea Anrather ◽  
Freia Von Raußendorf ◽  
Graham Warren

In the protist parasite Trypanosoma brucei, the single Polo-like kinase (TbPLK) controls the inheritance of a suite of organelles that help position the parasite's single flagellum. These include the basal bodies, the bilobe, and the flagellar attachment zone (FAZ). TbCentrin2 was previously shown to be a target for TbPLK in vitro, and this is extended in this study to in vivo studies, highlighting a crucial role for serine 54 in the N-terminal domain. Duplication of the bilobe correlates with the presence of TbPLK and phospho-TbCentrin2, identified using phosphospecific antiserum. Mutation of S54 leads to slow growth (S54A) or no growth (S54D), the latter suggesting that dephosphorylation is needed to complete bilobe duplication and subsequent downstream events necessary for flagellum inheritance.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Omar Sheriff ◽  
Li-Fern Lim ◽  
Cynthia Y. He

The microtubule cytoskeleton forms the most prominent structural system inTrypanosoma brucei, undergoing extensive modifications during the cell cycle. Visualization of tyrosinated microtubules leads to a semiconservative mode of inheritance, whereas recent studies employing microtubule plus end tracking proteins have hinted at an asymmetric pattern of cytoskeletal inheritance. To further the knowledge of microtubule synthesis and inheritance duringT. bruceicell cycle, the dynamics of the microtubule cytoskeleton was visualized by inducible YFP-α-tubulin expression. During new flagellum/flagellum attachment zone (FAZ) biogenesis and cell growth, YFP-α-tubulin was incorporated mainly between the old and new flagellum/FAZ complexes. Cytoskeletal modifications at the posterior end of the cells were observed with EB1, a microtubule plus end binding protein, particularly during mitosis. Additionally, the newly formed microtubules segregated asymmetrically, with the daughter cell inheriting the new flagellum/FAZ complex retaining most of the new microtubules. Together, our results suggest an intimate connection between new microtubule formation and new FAZ assembly, consequently leading to asymmetric microtubule inheritance and cell division.


2008 ◽  
Vol 181 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Christopher L. de Graffenried ◽  
Helen H. Ho ◽  
Graham Warren

A bilobed structure marked by TbCentrin2 regulates Golgi duplication in the protozoan parasite Trypanosoma brucei. This structure must itself duplicate during the cell cycle for Golgi inheritance to proceed normally. We show here that duplication of the bilobed structure is dependent on the single polo-like kinase (PLK) homologue in T. brucei (TbPLK). Depletion of TbPLK leads to malformed bilobed structures, which is consistent with an inhibition of duplication and an increase in the number of dispersed Golgi structures with associated endoplasmic reticulum exit sites. These data suggest that the bilobe may act as a scaffold for the controlled assembly of the duplicating Golgi.


1999 ◽  
Vol 19 (12) ◽  
pp. 8191-8200 ◽  
Author(s):  
Philippe Bastin ◽  
Thomas H. MacRae ◽  
Susan B. Francis ◽  
Keith R. Matthews ◽  
Keith Gull

ABSTRACT The paraflagellar rod (PFR) of the African trypanosomeTrypanosoma brucei represents an excellent model to study flagellum assembly. The PFR is an intraflagellar structure present alongside the axoneme and is composed of two major proteins, PFRA and PFRC. By inducible expression of a functional epitope-tagged PFRA protein, we have been able to monitor PFR assembly in vivo. As T. brucei cells progress through their cell cycle, they possess both an old and a new flagellum. The induction of expression of tagged PFRA in trypanosomes growing a new flagellum provided an excellent marker of newly synthesized subunits. This procedure showed two different sites of addition: a major, polar site at the distal tip of the flagellum and a minor, nonpolar site along the length of the partially assembled PFR. Moreover, we have observed turnover of epitope-tagged PFRA in old flagella that takes place throughout the length of the PFR structure. Expression of truncated PFRA mutant proteins identified a sequence necessary for flagellum localization by import or binding. This sequence was not sufficient to confer full flagellum localization to a green fluorescent protein reporter. A second sequence, necessary for the addition of PFRA protein to the distal tip, was also identified. In the absence of this sequence, the mutant PFRA proteins were localized both in the cytosol and in the flagellum where they could still be added along the length of the PFR. This seven-amino-acid sequence is conserved in all PFRA and PFRC proteins and shows homology to a sequence in the flagellar dynein heavy chain of Chlamydomonas reinhardtii.


Sign in / Sign up

Export Citation Format

Share Document