scholarly journals Integrin alpha subunit ratios, cytoplasmic domains, and growth factor synergy regulate muscle proliferation and differentiation.

1996 ◽  
Vol 133 (1) ◽  
pp. 169-184 ◽  
Author(s):  
S K Sastry ◽  
M Lakonishok ◽  
D A Thomas ◽  
J Muschler ◽  
A F Horwitz

The role of integrins in muscle differentiation was addressed by ectopic expression of integrin alpha subunits in primary quail skeletal muscle, a culture system particularly amenable to efficient transfection and expression of exogenous genes. Ectopic expression of either the human alpha5 subunit or the chicken alpha6 subunit produced contrasting phenotypes. The alpha5-transfected myoblasts remain in the proliferative phase and are differentiation inhibited even in confluent cultures. In contrast, myoblasts that overexpress the alpha6 subunit exhibit inhibited proliferation and substantial differentiation. Antisense suppression of endogenous quail alpha6 expression inhibits myoblast differentiation resulting in sustained proliferation. These effects of ectopic alpha subunit expression are mediated, to a large extent, by the cytoplasmic domains. Ectopic expression of chimeric alpha subunits, alpha5ex/6cyto and alpha6ex/5cyto, produced phenotypes opposite to those observed with ectopic alpha5 or alpha6 expression. Myoblasts that express alpha5ex/6cyto show decreased proliferation while differentiation is partially restored. In contrast, the alpha6ex/5cyto transfectants remain in the proliferative phase unless allowed to become confluent for at least 24 h. Furthermore, expression of human alpha5 subunit cytoplasmic domain truncations, before and after the conserved GFFKR motif, shows that this sequence is important in alpha5 regulation of differentiation. Ectopic alpha5 and alpha6 expression also results in contrasting responses to the mitogenic effects of serum growth factors. Myoblasts expressing the human alpha5 subunit differentiate only in the absence of serum while differentiation of untransfected and alpha6-transfected myoblasts is insensitive to serum concentration. Addition of individual, exogenous growth factors to alpha5-transfected myoblasts results in unique responses that differ from their effects on untransfected cells. Both bFGF or TGFbeta inhibit the serum-free differentiation of alpha5-transfected myoblasts, but differ in that bFGF stimulates proliferation whereas TGF-beta inhibits it. Insulin or TGF-alpha promote proliferation and differentiation of alpha5-transfected myoblasts; however, insulin alters myotube morphology. TGF-alpha or PDGF-BB enhance muscle alpha-actinin organization into myofibrils, which is impaired in differentiated alpha5 cultures. With the exception of TGF-alpha, these growth factor effects are not apparent in untransfected myoblasts. Finally, myoblast survival under serum-free conditions is enhanced by ectopic alpha5 expression only in the presence of bFGF and insulin while TGF-alpha and TGF-beta promote survival of untransfected myoblasts. Our observations demonstrate (1) a specificity for integrin alpha subunits in regulating myoblast proliferation and differentiation; (2) that the ratio of integrin expression can affect the decision to proliferate or differentiate; (3) a role for the alpha subunit cytoplasmic domain in mediating proliferative and differentiative signals; and (4) the regulation of proliferation, differentiation, cytoskeletal assembly, and cell survival depend critically on the expression levels of different integrins and the growth factor environment in which the cells reside.

2003 ◽  
Vol 162 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Roberta Faccio ◽  
Deborah V. Novack ◽  
Alberta Zallone ◽  
F. Patrick Ross ◽  
Steven L. Teitelbaum

The β3 integrin cytoplasmic domain, and specifically S752, is critical for integrin localization and osteoclast (OC) function. Because growth factors such as macrophage colony–stimulating factor and hepatocyte growth factor affect integrin activation and function via inside-out signaling, a process requiring the β integrin cytoplasmic tail, we examined the effect of these growth factors on OC precursors. To this end, we retrovirally expressed various β3 integrins with cytoplasmic tail mutations in β3-deficient OC precursors. We find that S752 in the β3 cytoplasmic tail is required for growth factor–induced integrin activation, cytoskeletal reorganization, and membrane protrusion, thereby affecting OC adhesion, migration, and bone resorption. The small GTPases Rho and Rac mediate cytoskeletal reorganization, and activation of each is defective in OC precursors lacking a functional β3 subunit. Activation of the upstream mediators c-Src and c-Cbl is also dependent on β3. Interestingly, although the FAK-related kinase Pyk2 interacts with c-Src and c-Cbl, its activation is not disrupted in the absence of functional β3. Instead, its activation is dependent upon intracellular calcium, and on the β2 integrin. Thus, the β3 cytoplasmic domain is responsible for activation of specific intracellular signals leading to cytoskeletal reorganization critical for OC function.


1997 ◽  
Vol 273 (3) ◽  
pp. C843-C851 ◽  
Author(s):  
H. A. Franch ◽  
P. V. Curtis ◽  
W. E. Mitch

The combination of epidermal growth factor (EGF) plus transforming growth factor-beta 1 (TGF-beta 1) causes hypertrophy in renal epithelial cells. One mechanism contributing to hypertrophy is that EGF induces activation of the cell cycle and increases protein synthesis, whereas TGF-beta 1 prevents cell division, thereby converting hyperplasia to hypertrophy. To assess whether suppression of proteolysis is another mechanism causing hypertrophy induced by these growth factors, we measured protein degradation in primary cultures of proximal tubule cells and in cultured NRK-52E kidney cells. A concentration of 10(-8) M EGF alone or EGF plus 10(-10) M TGF-beta 1 decreased proteolysis by approximately 30%. TGF-beta 1 alone did not change protein degradation. Using inhibitors, we examined which proteolytic pathway is suppressed. Neither proteasome nor calpain inhibitors prevented the antiproteolytic response to EGF + TGF-beta 1. Inhibitors of lysosomal proteases eliminated the antiproteolytic response to EGF + TGF-beta 1, suggesting that these growth factors act to suppress lysosomal proteolysis. This antiproteolytic response was not caused by impaired EGF receptor signaling, since lysosomal inhibitors did not block EGF-induced protein synthesis. We conclude that suppression of lysosomal proteolysis contributes to growth factor-mediated hypertrophy of cultured kidney cells.


1990 ◽  
Vol 10 (6) ◽  
pp. 2669-2677
Author(s):  
G E Panganiban ◽  
K E Rashka ◽  
M D Neitzel ◽  
F M Hoffmann

The decapentaplegic (dpp) gene of Drosophila melanogaster is required for pattern formation in the embryo and for viability of the epithelial cells in the imaginal disks. The dpp protein product predicted from the DNA sequence is similar to members of a family of growth factors that includes transforming growth factor beta (TGF-beta). We have produced polyclonal antibodies to a recombinant dpp protein made in bacteria and used a metallothionein promoter to express a dpp cDNA in Drosophila S2 cells. Similar to other proteins in the TGF-beta family, the dpp protein produced by the Drosophila cells was proteolytically cleaved, and both portions of the protein were secreted from the cells. The amino-terminal 47-kilodalton (kDa) peptide was found in the medium and in the proteins adhering to the plastic petri dish. The carboxy-terminal peptide, the region with sequence similarity to the active ligand portion of TGF-beta, was found extracellularly as a 30-kDa homodimer. Most of the 30-kDa homodimer was in the S2 cell protein adsorbed onto the surface of the plastic dish. The dpp protein could be released into solution by increased salt concentration and nonionic detergent. Under these conditions, the amino-terminal and carboxy-terminal portions of dpp were not associated in a stable complex.


Development ◽  
1991 ◽  
Vol 111 (2) ◽  
pp. 635-645 ◽  
Author(s):  
K.M. Stocker ◽  
L. Sherman ◽  
S. Rees ◽  
G. Ciment

In previous studies, we showed that neural crest (NC)-derived cells from embryonic quail dorsal root ganglia (DRG) and peripheral nerve (PN), which do not normally give rise to melanocytes, become committed to melanogenesis following treatment in culture with the phorbol ester drug 12-O-tetradecanoyl phorbol-13-acetate (TPA). These and other observations support the notion that melanocytes and Schwann cells are derived from a common bipotent intermediate in the neural crest lineage—the melanocyte/Schwann cell progenitor. In this study, we test the possibility that peptide growth factors found in the embryonic environment might act similarly to TPA to influence the fates of these cells. DRG and PN explants were cultured in medium supplemented with a variety of growth factors, and then the cultures were examined for the presence of pigment cells. We found that basic fibroblast growth factor (bFGF), but not various other growth factors, induced pigmentation in about 20% of these cultures. When low concentrations of TPA were included in the culture medium, bFGF augmented the TPA-induced pigmentation, significantly increasing the proportion of pigmented cultures. These effects of bFGF were age-dependent, and could be blocked by addition of a bFGF-neutralizing antibody to the culture medium. In contrast to these stimulatory effects of bFGF, transforming growth factor-beta 1 (TGF-beta 1) was found to inhibit the TPA- or bFGF-induced pigmentation of DRG cultures. These data suggest, therefore, that at least some NC-derived cells are responsive to bFGF and TGF-beta 1, and that these growth factors may play an important role in the control of NC cell fate.


1994 ◽  
Vol 267 (6) ◽  
pp. E990-E1001 ◽  
Author(s):  
M. Slater ◽  
J. Patava ◽  
K. Kingham ◽  
R. S. Mason

Human fetal osteoblast-like cells formed a regular multilayered structure in vitro with an extensive collagen-based extracellular matrix. With colloidal gold immunocytochemistry, labels for alkaline phosphatase and osteocalcin were distributed in a relatively diffuse pattern, in contrast to the bone growth factors, insulin-like growth factors I and II (IGF-I and IGF-II), transforming growth factor-beta 1 (TGF-beta 1), and basic fibroblast growth factor, which were colocalized in the collagenous matrix of the multilayer. The inclusion of 17 beta-estradiol (10(-11) to 10(-9) M) in the culture medium increased multilayer depths, increased labeling for IGF-I, IGF-II, and TGF-beta 1, and resulted in earlier detection of TGF-beta 1 label. In contrast, the increase in multilayer depth resulting from treatment with human platelets, an exogenous source of growth factors, was not accompanied by an increase in matrix IGF-I, IGF-II, or TGF-beta 1 label, suggesting a particular effect of estradiol to facilitate this process. Because growth factors in bone matrix may act as coupling agents when released during resorption, reduced growth factor incorporation in the presence of reduced sex steroid concentrations may lead to uncoupling of resorption and subsequent formation.


1986 ◽  
Vol 6 (3) ◽  
pp. 870-877 ◽  
Author(s):  
D F Stern ◽  
A B Roberts ◽  
N S Roche ◽  
M B Sporn ◽  
R A Weinberg

To identify functional relationships between oncogenes and growth factors, we compared the effects of transfected myc and ras oncogenes on the responsiveness of Fischer rat 3T3 cells to three growth factors: epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and transforming growth factor-beta (TGF-beta). Control cells did not grow in soft agar under any conditions. ras-Transfected cells grew in soft agar under all conditions tested and were insensitive to the stimulatory effects of exogenous growth factors. These cells secreted elevated levels of both EGF-like factors and TGF-beta, suggesting that the lack of responsiveness of these cells to exogenous growth factors arose from autocrine stimulation. myc-Transfected cells displayed conditional anchorage-independent growth: they formed numerous colonies in soft agar in the presence of EGF but relatively few colonies in the presence of PDGF or TGF-beta. Secretion of EGF-like factors and TGF-beta by these cells was not elevated above that of control cells. These results suggest a model for the mechanism of cooperation between myc and ras oncogenes in which ras-like genes induce growth factor production, while myc-like genes increase the responsiveness of cells to these factors.


1994 ◽  
Vol 303 (3) ◽  
pp. 713-721 ◽  
Author(s):  
G E Ysart ◽  
R M Mason

1. The effect of different batches of fetal bovine serum and of growth factors on [35S]sulphate incorporation into glycosaminoglycans and on UDP-sugar pools in explant cultures of bovine articular cartilage was investigated. 2. [35S]Sulphate incorporation was variably stimulated between 1.2- and 3.5-fold by four different batches of serum. The UDP-glucuronate pool size expanded 4.3-6.5-fold in the presence of serum, even in those cultures in which little stimulation of [35S]sulphate incorporation occurred. The UDP-N-acetylhexosamine and UDP-hexose pools expanded by about 1.5- and 2.0-fold respectively in the presence of serum. UDP-xylose was not detected. 3. Equilibrium-labelling and pulse-chase experiments with D-[1-3H]glucose indicated that the rate of flux through the UDP-sugar pools was unaffected by serum. UDP-hexose, UDP-N-acetylhexosamine and UDP-glucuronate have approximate half-lives (t1/2) of 7, 12 and 3-4 min respectively. At equilibrium, the 3H specific activities of UDP-hexose and UDP-N-acetylhexosamine were very similar but that for the UDP-glucuronate pool was much higher, especially in serum-supplemented cultures. The results suggest that UDP-glucuronate synthesis occurs via a pathway which is independent of the main UDP-hexose pathway. 4. Supplementing cultures with heat-treated serum had no effect on the serum-induced expansion of UDP-sugar pools but stimulation of [35S]sulphate incorporation into glycosaminoglycans was 50% lower than for native serum. Acid-treated serum promoted a 2-fold expansion of the UDP-glucuronate and UDP-N-acetylhexosamine pool over that obtained with native serum but was 20% less effective in stimulating [35S]sulphate incorporation than the latter. Prior dialysis of serum had no effect on its modulatory action on either [35S]sulphate incorporation or on the size of UDP-sugar pools. 5. Insulin-like growth factor 1 (IGF-1), transforming growth factor beta-1 (TGF beta-1), platelet-derived growth factor (PDGF) (BB homodimer) and epidermal growth factor (EGF) all stimulated [35S]sulphate incorporation into glycosaminoglycans as expected. The UDP-glucuronate pool expanded by 1.5- and 2.0-fold in the presence of IGF-1 and TGF beta-1 respectively, and by about 1.8-fold in the presence of PDGF or EGF. None of the factors investigated, or combinations of IGF-1 and TGF beta-1 or IGF-1 and EGF, stimulated expansion of the UDP-glucuronate pool to the same extent as native serum.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 2 (12) ◽  
pp. 1081-1095 ◽  
Author(s):  
C S Long ◽  
C J Henrich ◽  
P C Simpson

Cardiac nonmyocytes, primarily fibroblasts, surround cardiac myocytes in vivo. We examined whether nonmyocytes could modulate myocyte growth by production of one or more growth factors. Cardiac myocyte hypertrophic growth was stimulated in cultures with increasing numbers of cardiac nonmyocytes. This effect of nonmyocytes on myocyte size was reproduced by serum-free medium conditioned by the cardiac nonmyocytes. The majority of the nonmyocyte-derived myocyte growth-promoting activity bound to heparin-Sepharose and was eluted with 0.75 M NaCl. Several known polypeptide growth factors found recently in cardiac tissue, namely acidic fibroblast growth factor (aFGF), basic FGF (bFGF), platelet-derived growth factor (PDGF), tumor necrosis factor alpha (TNF alpha), and transforming growth factor beta 1 (TGF beta 1), also caused hypertrophy of cardiac myocytes in a dose-dependent manner. However, the nonmyocyte-derived growth factor (tentatively named NMDGF) could be distinguished from these other growth factors by different heparin-Sepharose binding profiles (TNF alpha, aFGF, bFGF, and TGF beta 1) by neutralizing growth factor-specific antisera (PDGF, TNF alpha, aFGF, bFGF, and TGF beta 1), by the failure of NMDGF to stimulate phosphatidylinositol hydrolysis (PDGF and TGF beta 1), and, finally, by the apparent molecular weight of NMDGF (45-50 kDa). This nonmyocyte-derived heparin-binding growth factor may represent a novel paracrine growth mechanism in myocardium.


Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 435-445 ◽  
Author(s):  
T. Hirobe

Basic fibroblast growth factor (bFGF) stimulated the sustained proliferation of mouse epidermal melanoblasts derived from epidermal cell suspensions in a serum-free medium supplemented with dibutyryl adenosine 3′,5′-cyclic monophosphate (DBcAMP). The melanoblasts could be subcultured in the serum-free medium supplemented with the two factors in the presence of keratinocytes, but not in the absence of keratinocytes. In these conditions, some melanoblasts proliferated without differentiating for more than 20 days including a subculture. This is the first report of a successful culture of melanoblasts from mammalian skin. This culture system is expected to clarify further markers for melanoblasts and requirements for their proliferation and differentiation.


Sign in / Sign up

Export Citation Format

Share Document