scholarly journals Control of Mitotic Events by Nap1 and the Gin4 Kinase

1997 ◽  
Vol 138 (1) ◽  
pp. 119-130 ◽  
Author(s):  
Roger Altman ◽  
Douglas Kellogg

Little is known about the pathways used by cyclins and cyclin-dependent kinases to induce the events of the cell cycle. In budding yeast, a protein called Nap1 binds to the mitotic cyclin Clb2, and Nap1 is required for the ability of Clb2 to induce specific mitotic events, but the role played by Nap1 is unclear. We have used genetic and biochemical approaches to identify additional proteins that function with Nap1 in the control of mitotic events. These approaches have both identified a protein kinase called Gin4 that is required for the ability of Clb2 and Nap1 to promote the switch from polar to isotropic bud growth that normally occurs during mitosis. Gin4 is also required for the ability of Clb2 and Nap1 to promote normal progression through mitosis. The Gin4 protein becomes phosphorylated as cells enter mitosis, resulting in the activation of Gin4 kinase activity, and the phosphorylation of Gin4 is dependent upon Nap1 and Clb2 in vivo. Affinity chromatography experiments demonstrate that Gin4 binds tightly to Nap1, indicating that the functions of these two proteins are closely tied within the cell. These results demonstrate that the activation of Gin4 is under the control of Clb2 and Nap1, and they provide an important step towards elucidating the molecular pathways that link cyclin-dependent kinases to the events they control.

1995 ◽  
Vol 130 (3) ◽  
pp. 675-685 ◽  
Author(s):  
D R Kellogg ◽  
A W Murray

NAP1 is a 60-kD protein that interacts specifically with mitotic cyclins in budding yeast and frogs. We have examined the ability of the yeast mitotic cyclin Clb2 to function in cells that lack NAP1. Our results demonstrate that Clb2 is unable to carry out its full range of functions without NAP1, even though Clb2/p34CDC28-associated kinase activity rises to normal levels. In the absence of NAP1, Clb2 is unable to efficiently induce mitotic events, and cells undergo a prolonged delay at the short spindle stage with normal levels of Clb2/p34CDC28 kinase activity. NAP1 is also required for the ability of Clb2 to induce the switch from polar to isotropic bud growth. As a result, polar bud growth continues during mitosis, giving rise to highly elongated cells. Our experiments also suggest that NAP1 is required for the ability of the Clb2/p34CDC28 kinase complex to amplify its own production, and that NAP1 plays a role in regulation of microtubule dynamics during mitosis. Together, these results demonstrate that NAP1 is required for the normal function of the activated Clb2/p34CDC28 kinase complex, and provide a step towards understanding how cyclin-dependent kinase complexes induce specific events during the cell cycle.


1993 ◽  
Vol 13 (5) ◽  
pp. 2899-2908 ◽  
Author(s):  
A L Jackson ◽  
P M Pahl ◽  
K Harrison ◽  
J Rosamond ◽  
R A Sclafani

Yeast Cdc7 protein kinase and Dbf4 protein are both required for the initiation of DNA replication at the G1/S phase boundary of the mitotic cell cycle. Cdc7 kinase function is stage-specific in the cell cycle, but total Cdc7 protein levels remained unchanged. Therefore, regulation of Cdc7 function appears to be the result of posttranslational modification. In this study, we have attempted to elucidate the mechanism responsible for achieving this specific execution point of Cdc7. Cdc7 kinase activity was shown to be maximal at the G1/S boundary by using either cultures synchronized with alpha factor or Cdc- mutants or with inhibitors of DNA synthesis or mitosis. Therefore, Cdc7 kinase is regulated by a posttranslational mechanism that ensures maximal Cdc7 activity at the G1/S boundary, which is consistent with Cdc7 function in the cell cycle. This cell cycle-dependent regulation could be the result of association with the Dbf4 protein. In this study, the Dbf4 protein was shown to be required for Cdc7 kinase activity in that Cdc7 kinase activity is thermolabile in vitro when extracts prepared from a temperature-sensitive dbf4 mutant grown under permissive conditions are used. In vitro reconstitution assays, in addition to employment of the two-hybrid system for protein-protein interactions, have demonstrated that the Cdc7 and Dbf4 proteins interact both in vitro and in vivo. A suppressor mutation, bob1-1, which can bypass deletion mutations in both cdc7 and dbf4 was isolated. However, the bob1-1 mutation cannot bypass all events in G1 phase because it fails to suppress temperature-sensitive cdc4 or cdc28 mutations. This indicates that the Cdc7 and Dbf4 proteins act at a common point in the cell cycle. Therefore, because of the common point of function for the two proteins and the fact that the Dbf4 protein is essential for Cdc7 function, we propose that Dbf4 may represent a cyclin-like molecule specific for the activation of Cdc7 kinase.


2003 ◽  
Vol 23 (17) ◽  
pp. 6327-6337 ◽  
Author(s):  
Aparna Sreenivasan ◽  
Anthony C. Bishop ◽  
Kevan M. Shokat ◽  
Douglas R. Kellogg

ABSTRACT In budding yeast, the Elm1 kinase is required for coordination of cell growth and cell division at G2/M. Elm1 is also required for efficient cytokinesis and for regulation of Swe1, the budding yeast homolog of the Wee1 kinase. To further characterize Elm1 function, we engineered an ELM1 allele that can be rapidly and selectively inhibited in vivo. We found that inhibition of Elm1 kinase activity during G2 results in a phenotype similar to the phenotype caused by deletion of the ELM1 gene, as expected. However, inhibition of Elm1 kinase activity earlier in the cell cycle results in a prolonged G1 delay. The G1 requirement for Elm1 kinase activity occurs before bud emergence, polarization of the septins, and synthesis of G1 cyclins. Inhibition of Elm1 kinase activity during early G1 also causes defects in the organization of septins, and inhibition of Elm1 kinase activity in a strain lacking the redundant G1 cyclins CLN1 and CLN2 is lethal. These results demonstrate that the Elm1 kinase plays an important role in G1 events required for bud emergence and septin organization.


1999 ◽  
Vol 19 (12) ◽  
pp. 7983-7994 ◽  
Author(s):  
Aparna Sreenivasan ◽  
Douglas Kellogg

ABSTRACT In budding yeast, the Clb2 mitotic cyclin initiates a signaling network that negatively regulates polar bud growth during mitosis. This signaling network appears to require the function of a Clb2-binding protein called Nap1, the Cdc42 GTPase, and two protein kinases called Gin4 and Cla4. In this study, we demonstrate that the Elm1 kinase also plays a role in the control of bud growth during mitosis. Cells carrying a deletion of the ELM1 gene undergo a prolonged mitotic delay, fail to negatively regulate polar bud growth during mitosis, and show defects in septin organization. In addition, Elm1 is required in vivo for the proper regulation of both the Cla4 and Gin4 kinases and interacts genetically with Cla4, Gin4, and the mitotic cyclins. Previous studies have suggested that Elm1 may function to negatively regulate the Swe1 kinase. To further understand the functional relationship between Elm1 and Swe1, we have characterized the phenotype of Δelm1 Δswe1 cells. We found that Δelm1 Δswe1 cells are inviable at 37°C and that a large proportion of Δelm1Δswe1 cells grown at 30°C contain multiple nuclei, suggesting severe defects in cytokinesis. In addition, we found that Elm1 is required for the normal hyperphosphorylation of Swe1 during mitosis. We propose a model in which the Elm1 kinase functions in a mitotic signaling network that controls events required for normal bud growth and cytokinesis, while the Swe1 kinase functions in a checkpoint pathway that delays nuclear division in response to defects in these events.


2000 ◽  
Vol 20 (16) ◽  
pp. 5858-5864 ◽  
Author(s):  
Gregory J. Reynard ◽  
William Reynolds ◽  
Rati Verma ◽  
Raymond J. Deshaies

ABSTRACT p13suc1 (Cks) proteins have been implicated in the regulation of cyclin-dependent kinase (CDK) activity. However, the mechanism by which Cks influences the function of cyclin-CDK complexes has remained elusive. We show here that Cks1 is required for the protein kinase activity of budding yeast G1 cyclin-CDK complexes. Cln2 and Cdc28 subunits coexpressed in baculovirus-infected insect cells fail to exhibit protein kinase activity towards multiple substrates in the absence of Cks1. Cks1 can both stabilize Cln2-Cdc28 complexes and activate intact complexes in vitro, suggesting that it plays multiple roles in the biogenesis of active G1cyclin-CDK complexes. In contrast, Cdc28 forms stable, active complexes with the B-type cyclins Clb4 and Clb5 regardless of whether Cks1 is present. The levels of Cln2-Cdc28 and Cln3-Cdc28 protein kinase activity are severely reduced in cks1-38 cell extracts. Moreover, phosphorylation of G1 cyclins, which depends on Cdc28 activity, is reduced in cks1-38 cells. The role of Cks1 in promoting G1 cyclin-CDK protein kinase activity both in vitro and in vivo provides a simple molecular rationale for the essential role of CKS1 in progression through G1 phase in budding yeast.


2008 ◽  
Vol 19 (8) ◽  
pp. 3243-3253 ◽  
Author(s):  
Laura A. Simmons Kovacs ◽  
Christine L. Nelson ◽  
Steven B. Haase

Centrosome duplication must be tightly controlled so that duplication occurs only once each cell cycle. Accumulation of multiple centrosomes can result in the assembly of a multipolar spindle and lead to chromosome mis-segregation and genomic instability. In metazoans, a centrosome-intrinsic mechanism prevents reduplication until centriole disengagement. Mitotic cyclin/cyclin-dependent kinases (CDKs) prevent reduplication of the budding yeast centrosome, called a spindle pole body (SPB), in late S-phase and G2/M, but the mechanism remains unclear. How SPB reduplication is prevented early in the cell cycle is also not understood. Here we show that, similar to metazoans, an SPB-intrinsic mechanism prevents reduplication early in the cell cycle. We also show that mitotic cyclins can inhibit SPB duplication when expressed before satellite assembly in early G1, but not later in G1, after the satellite had assembled. Moreover, electron microscopy revealed that SPBs do not assemble a satellite in cells expressing Clb2 in early G1. Finally, we demonstrate that Clb2 must localize to the cytoplasm in order to inhibit SPB duplication, suggesting the possibility for direct CDK inhibition of satellite components. These two mechanisms, intrinsic and extrinsic control by CDK, evoke two-step system that prevents SPB reduplication throughout the cell cycle.


Genetics ◽  
1997 ◽  
Vol 147 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Ann Sutton ◽  
Richard Freiman

Abstract The CAK1 gene encodes the major CDK-activating kinase (CAK) in budding yeast and is required for activation of Cdc28p for cell cycle progression from G2 to M phase. Here we describe the isolation of a mutant allele of CAK1 in a synthetic lethal screen with the Sit4 protein phosphatase. Analysis of several different cak1 mutants shows that although the G2 to M transition appears most sensitive to loss of Cak1p function, Cak1p is also required for activation of Cdc28p for progression from G1 into S phase. Further characterization of these mutants suggests that, unlike the CAK identified from higher eukaryotes, Cak1p of budding yeast may not play a role in general transcription. Finally, although Cak1 protein levels and in vitro protein kinase activity do not fluctuate during the cell cycle, at least a fraction of Cak1p associates with higher molecular weight proteins, which may be important for its in vivo function.


1998 ◽  
Vol 143 (3) ◽  
pp. 709-717 ◽  
Author(s):  
Christopher W. Carroll ◽  
Roger Altman ◽  
David Schieltz ◽  
John R. Yates ◽  
Douglas Kellogg

In budding yeast, a protein kinase called Gin4 is specifically activated during mitosis and functions in a pathway initiated by the Clb2 cyclin to control bud growth. We have used genetics and biochemistry to identify additional proteins that function with Gin4 in this pathway, and both of these approaches have identified members of the septin family. Loss of septin function produces a phenotype that is very similar to the phenotype caused by loss of Gin4 function, and the septins are required early in mitosis to activate Gin4 kinase activity. Furthermore, septin mutants display a prolonged mitotic delay at the short spindle stage, consistent with a role for the septins in the control of mitotic events. Members of the septin family bind directly to Gin4, demonstrating that the functions of Gin4 and the septins must be closely linked within the cell. These results demonstrate that the septins in budding yeast play an integral role in the mitosis-specific regulation of the Gin4 kinase and that they carry out functions early in mitosis.


1999 ◽  
Vol 19 (7) ◽  
pp. 4774-4787 ◽  
Author(s):  
Jonathan Kimmelman ◽  
Philipp Kaldis ◽  
Christoph J. Hengartner ◽  
Geoffrey M. Laff ◽  
Sang Seok Koh ◽  
...  

ABSTRACT Cyclin-dependent kinase (CDK)-activating kinases (CAKs) carry out essential activating phosphorylations of CDKs such as Cdc2 and Cdk2. The catalytic subunit of mammalian CAK, MO15/Cdk7, also functions as a subunit of the general transcription factor TFIIH. However, these functions are split in budding yeast, where Kin28p functions as the kinase subunit of TFIIH and Cak1p functions as a CAK. We show that Kin28p, which is itself a CDK, also contains a site of activating phosphorylation on Thr-162. The kinase activity of a T162A mutant of Kin28p is reduced by ∼75 to 80% compared to that of wild-type Kin28p. Moreover, cells containing kin28T162A and a conditional allele of TFB3 (the ortholog of the mammalian MAT1 protein, an assembly factor for MO15 and cyclin H) are severely compromised and display a significant further reduction in Kin28p activity. This finding provides in vivo support for the previous biochemical observation that MO15-cyclin H complexes can be activated either by activating phosphorylation of MO15 or by binding to MAT1. Finally, we show that Kin28p is no longer phosphorylated on Thr-162 following inactivation of Cak1p in vivo, that Cak1p can phosphorylate Kin28p on Thr-162 in vitro, and that this phosphorylation stimulates the CTD kinase activity of Kin28p. Thus, Kin28p joins Cdc28p, the major cell cycle Cdk in budding yeast, as a physiological Cak1p substrate. These findings indicate that although MO15 and Cak1p constitute different forms of CAK, both control the cell cycle and the phosphorylation of the C-terminal domain of the large subunit of RNA polymerase II by TFIIH.


Development ◽  
1990 ◽  
Vol 109 (1) ◽  
pp. 149-156
Author(s):  
A.D. Johnson ◽  
L.D. Smith

Entry into M phase in the eukaryotic cell cycle is controlled by the oscillating activity of MPF. The active component of MPF is now known to be the p34cdc2 protein kinase originally found in yeast. The p34cdc2 protein kinase displays a characteristic M-phase-specific histone H1 kinase activity when it interacts with cyclins, which are proteins that oscillate through the cell cycle and are thought to regulate p34cdc2 activity. Cyclins can induce M phase when introduced into fully grown Xenopus oocytes and cyclin may play a role in normal oocyte maturation. Small Xenopus oocytes do not mature in response to the hormonal triggers which act on stage 6 oocytes. We introduced cyclin into stage 4 (small) Xenopus oocytes and showed that it activates MPF in these cells, probably by interacting with endogenous p34cdc2 kinase. We made labelled extracts from cyclin-mRNA-injected stage 4 oocytes and used them to show differential stability of clam cyclins A and B at oocyte maturation. The relative stability of the two forms of cyclin related directly to their ability to stabilize crude MPF preparations from injected stage 6 oocytes.


Sign in / Sign up

Export Citation Format

Share Document