scholarly journals β1 Integrin Is Essential for Teratoma Growth and Angiogenesis

1997 ◽  
Vol 139 (1) ◽  
pp. 265-278 ◽  
Author(s):  
Wilhelm Bloch ◽  
Erik Forsberg ◽  
Sylvia Lentini ◽  
Cord Brakebusch ◽  
Karl Martin ◽  
...  

Teratomas are benign tumors that form after ectopic injection of embryonic stem (ES) cells into mice and contain derivatives of all primitive germ layers. To study the role of β1 integrin during teratoma formation, we compared teratomas induced by normal and β1-null ES cells. Injection of normal ES cells gave rise to large teratomas. In contrast, β1-null ES cells either did not grow or formed small teratomas with an average weight of <5% of that of normal teratomas. Histological analysis of β1-null teratomas revealed the presence of various differentiated cells, however, a much lower number of host-derived stromal cells than in normal teratomas. Fibronectin, collagen I, and nidogen were expressed but, in contrast to normal teratomas, diffusely deposited in β1-null teratomas. Basement membranes were present but with irregular shape and detached from the cell surface. Normal teratomas had large blood vessels with a smooth inner surface, containing both host- and ES cell–derived endothelial cells. In contrast, β1-null teratomas had small vessels that were loosely embedded into the connective tissue. Furthermore, endothelial cells were always of host-derived origin and formed blood vessels with an irregular inner surface. Although β1- deficient endothelial cells were absent in teratomas, β1-null ES cells could differentiate in vitro into endothelial cells. The formation of a complex vasculature, however, was significantly delayed and of poor quality in β1-null embryoid bodies. Moreover, while vascular endothelial growth factor induced proliferation of endothelial cells as well as an extensive branching of blood vessels in normal embryoid bodies, it had no effect in β1-null embryoid bodies.

Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 361-372 ◽  
Author(s):  
Noah Byrd ◽  
Sandy Becker ◽  
Peter Maye ◽  
Roopa Narasimhaiah ◽  
Benoit St-Jacques ◽  
...  

Blood islands, the precursors of yolk sac blood vessels, contain primitive erythrocytes surrounded by a layer of endothelial cells. These structures differentiate from extra-embryonic mesodermal cells that underlie the visceral endoderm. Our previous studies have shown that Indian hedgehog (Ihh) is expressed in the visceral endoderm both in the visceral yolk sac in vivo and in embryonic stem (ES) cell-derived embryoid bodies. Differentiating embryoid bodies form blood islands, providing an in vitro model for studying vasculogenesis and hematopoiesis. A role for Ihh in yolk sac function is suggested by the observation that roughly 50% of Ihh–/– mice die at mid-gestation, potentially owing to vascular defects in the yolk sac. To address the nature of the possible vascular defects, we have examined the ability of ES cells deficient for Ihh or smoothened (Smo), which encodes a receptor component essential for all hedgehog signaling, to form blood islands in vitro. Embryoid bodies derived from these cell lines are unable to form blood islands, and express reduced levels of both PECAM1, an endothelial cell marker, and α-SMA, a vascular smooth muscle marker. RT-PCR analysis in the Ihh–/– lines shows a substantial decrease in the expression of Flk1 and Tal1, markers for the hemangioblast, the precursor of both blood and endothelial cells, as well as Flt1, an angiogenesis marker. To extend these observations, we have examined the phenotypes of embryo yolk sacs deficient for Ihh or Smo. Whereas Ihh–/– yolk sacs can form blood vessels, the vessels are fewer in number and smaller, perhaps owing to their inability to undergo vascular remodeling. Smo–/– yolk sacs arrest at an earlier stage: the endothelial tubes are packed with hematopoietic cells, and fail to undergo even the limited vascular remodeling observed in the Ihh–/– yolk sacs. Our study supports a role for hedgehog signaling in yolk sac angiogenesis.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1214-1216 ◽  
Author(s):  
Ruediger Liersch ◽  
Filip Nay ◽  
Lingge Lu ◽  
Michael Detmar

AbstractThe molecular mechanisms that regulate the formation of the lymphatic vascular system remain poorly characterized. Whereas studies in embryonic stem (ES) cells have provided major new insights into the mechanisms of blood vessel formation, the development of lymphatic endothelium has not been previously observed. We established embryoid bodies (EBs) from murine ES cells in the presence or absence of lymphangiogenic growth factors. We found that lymphatic endothelial cells develop at day 18 after EB formation. These cells express CD31 and the lymphatic lineage markers Prox-1 and Lyve-1, but not the vascular marker MECA-32, and they frequently sprout from preexisting blood vessels. Lymphatic vessel formation was potently promoted by VEGF-A and VEGF-C but not by bFGF. Our results reveal, for the first time, that ES cells can differentiate into lymphatic endothelial cells, and they identify the EB assay as a powerful new tool to dissect the molecular mechanisms that control lymphatic vessel formation.


1998 ◽  
Vol 142 (4) ◽  
pp. 1121-1133 ◽  
Author(s):  
Helen Priddle ◽  
Lance Hemmings ◽  
Susan Monkley ◽  
Alison Woods ◽  
Bipin Patel ◽  
...  

We have used gene disruption to isolate two talin (−/−) ES cell mutants that contain no intact talin. The undifferentiated cells (a) were unable to spread on gelatin or laminin and grew as rounded colonies, although they were able to spread on fibronectin (b) showed reduced adhesion to laminin, but not fibronectin (c) expressed much reduced levels of β1 integrin, although levels of α5 and αV were wild-type (d) were less polarized with increased membrane protrusions compared with a vinculin (−/−) ES cell mutant (e) were unable to assemble vinculin or paxillin-containing focal adhesions or actin stress fibers on fibronectin, whereas vinculin (−/−) ES cells were able to assemble talin-containing focal adhesions. Both talin (−/−) ES cell mutants formed embryoid bodies, but differentiation was restricted to two morphologically distinct cell types. Interestingly, these differentiated talin (−/−) ES cells were able to spread and form focal adhesion-like structures containing vinculin and paxillin on fibronectin. Moreover, the levels of the β1 integrin subunit were comparable to those in wild-type ES cells. We conclude that talin is essential for β1 integrin expression and focal adhesion assembly in undifferentiated ES cells, but that a subset of differentiated cells are talin independent for both characteristics.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 138-138 ◽  
Author(s):  
Rita R. Perlingeiro

Abstract A critical role for endoglin (CD105) in early development has been demonstrated in mice deficient for this gene. Embryos homozygous for the endoglin mutation (eng−/−) fail to progress beyond 10.5 days postcoitum due primarily to vascular and cardiac abnormalities (Bordeau et al, 1999). Analysis of 9.5 dpc eng−/− embryos revealed abnormal vasculature and anemia of the yolk sac, suggesting that endoglin may be required for both blood and endothelial lineages. The hemangioblast, the bipotent precursor for hematopoietic and endothelial cells, can be assessed through the blast colony assay (BL-CFC) using a model system based on the in vitro differentiation of embryonic stem (ES) cells into embryoid bodies (EBs). To evaluate a role for endoglin in this early precursor, we differentiated eng−/−, eng+/−, and eng+/+ (wild-type) ES cells into EBs. At day 3 of EB differentiation, cells were disrupted and plated for blast colony formation in methylcellulose media containing vascular endothelial growth factor (VEGF), stem cell factor (SCF), and thrombopoietin (TPO). We found no difference in blast colony formation between heterozygous and wild-type ES cells. However, a significant reduction in the number of BL-CFCs was observed in eng−/− cells when compared to eng+/− or eng+/+ BL-CFCs (p < 0.001). Single eng−/−, eng+/−, and eng+/+ BL-CFCs gave rise to secondary hematopoietic colonies as well as endothelial cells, confirming their nature as hemangioblasts. These results suggest that although endoglin is required for hemangioblast development, its absence does not affect the bipotentiality of formed BL-CFCs. Since anemia was a feature of 9.5 dpc eng−/− yolk sac embryos, we also examined early erythropoiesis using the ES/EB system. For this purpose, eng−/−, eng+/−, and eng+/+ ES cells were differentiated into EBs for 4 days, at which time cells were disrupted and plated for primitive erythroid colonies (EryP) in methylcellulose media containing IL-3, IL-6, SCF, and Epo. We observed a reduction in the number of EryP colonies in eng−/− (p < 0.01) and eng+/− (p < 0.05) EBs when compared to controls (eng+/+). These results corroborate the anemia observed in vivo in the eng−/− embryos. We used RT-PCR and flow cytometry analysis to detect endoglin expression during a time course of EB differentiation. Endoglin is expressed in ES cells and disappears with differentiation. Expression re-appears at day 3 of differentiation, concomitantly with specification of the hemangioblast. Expression thereafter increases, correlating with mature endothelial cells at later time points. We did not find major differences in gene expression for Brachyury, Flk-1, Tie-2, embryonic and adult globins in a time course of EB differentiation for eng−/−, eng+/−, and eng+/+ ES cells. These data point out a role for endoglin, an ancillary receptor for several members of the transforming growth factor (TGF)-beta superfamily, in hemangioblast development.


Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3720-3730 ◽  
Author(s):  
M Bielinska ◽  
N Narita ◽  
M Heikinheimo ◽  
SB Porter ◽  
DB Wilson

During mouse embryogenesis the first hematopoietic and endothelial cells form in blood islands located between layers of visceral endoderm and mesoderm in the yolk sac. The role of visceral endoderm in primitive hematopoiesis and vasculogenesis is not well understood. We have assessed the consequences of a lack of visceral endoderm on blood cell and vessel formation using embryoid bodies derived from mouse embryonic stem (ES) cells deficient in GATA-4, a transcription factor expressed in yolk sac endoderm. When differentiated in vitro, these mutant embryoid bodies do not develop an external visceral endoderm layer. We found that Gata4-/-embryoid bodies, grown either in suspension culture or attached to a substratum, are defective in primitive hematopoiesis and vasculogenesis as evidenced by a lack of recognizable blood islands and vascular channels and a reduction in the expression of the primitive erythrocyte marker epsilon y-globin. Expression of the endothelial cell transcripts FIk-1, FIt-1, and platelet-endothelial cell adhesion molecule (PECAM) was not affected in the mutant embryoid bodies. Gata4-/-ES cells retained the capacity to differentiate into primitive erythroblasts and endothelial cells when cultured in methylcellulose or matrigel. Analysis of chimeric mice, generated by injecting Gata4-/-ES cells into 8-cell stage embryos of ROSA26 transgenic animals, showed that Gata4-/-ES cells can form blood islands and vessels when juxtaposed to visceral endoderm in vivo. We conclude that the visceral endoderm is not essential for the differentiation of primitive erythrocytes or endothelial cells, but this cell layer plays an important role in the formation and organization of yolk sac blood islands and vessels.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 471-478 ◽  
Author(s):  
W. Risau ◽  
H. Sariola ◽  
H.G. Zerwes ◽  
J. Sasse ◽  
P. Ekblom ◽  
...  

Embryonic stem cells (ESC) have been established previously from the inner cell mass cells of mouse blastocysts. In suspension culture, they spontaneously differentiate to blood-island-containing cystic embryoid bodies (CEB). The development of blood vessels from in situ differentiating endothelial cells of blood islands, a process which we call vasculogenesis, was induced by injecting ESC into the peritoneal cavity of syngeneic mice. In the peritoneum, fusion of blood islands and formation of an in vivo-like primary capillary plexus occurred. Transplantation of ESC and ESC-derived complex and cystic embryoid bodies (ESC-CEB) onto the quail chorioallantoic membrane (CAM) induced an angiogenic response, which was directed by nonyolk sac endoderm structures. Neither yolk sac endoderm from ESC-CEB nor normal mouse yolk sac tissue induced angiogenesis on the quail CAM. Extracts from ESC-CEB stimulated the proliferation of capillary endothelial cells in vitro. Mitogenic activity increase during in vitro culture and differentiation of ESC. Almost all growth factor activity was associated with the cells. The ESC-CEB derived endothelial cell growth factor bound to heparin-sepharose. The identification of acidic fibroblast growth factor (FGF)in heparin-sepharose-purified material was accomplished by immunoblot experiments involving antibodies against acidic and basic FGF. We conclude that vasculogenesis, the development of blood vessels from in situ differentiating endothelial cells, and angiogenesis, the sprouting of capillaries from preexisting vessels are very early events during embryogenesis which can be studied using ESC differentiating in vitro. Our results suggest that vasculogenesis and angiogenesis are differently regulated.


2000 ◽  
Vol 11 (12) ◽  
pp. 4295-4308 ◽  
Author(s):  
Anna Gualandris ◽  
Justin P. Annes ◽  
Marco Arese ◽  
Irene Noguera ◽  
Vladimir Jurukovski ◽  
...  

The latent transforming growth factor-β–binding protein-1 (LTBP-1) belongs to a family of extracellular glycoproteins that includes three additional isoforms (LTBP-2, -3, and -4) and the matrix proteins fibrillin-1 and -2. Originally described as a TGF-β–masking protein, LTBP-1 is involved both in the sequestration of latent TGF-β in the extracellular matrix and the regulation of its activation in the extracellular environment. Whereas the expression of LTBP-1 has been analyzed in normal and malignant cells and rodent and human tissues, little is known about LTBP-1 in embryonic development. To address this question, we used murine embryonic stem (ES) cells to analyze the appearance and role of LTBP-1 during ES cell differentiation. In vitro, ES cells aggregate to form embryoid bodies (EBs), which differentiate into multiple cell lineages. We analyzed LTBP-1 gene expression and LTBP-1 fiber appearance with respect to the emergence and distribution of cell types in differentiating EBs. LTBP-1 expression increased during the first 12 d in culture, appeared to remain constant between d 12 and 24, and declined thereafter. By immunostaining, fibrillar LTBP-1 was observed in those regions of the culture containing endothelial, smooth muscle, and epithelial cells. We found that inclusion of a polyclonal antibody to LTBP-1 during EB differentiation suppressed the expression of the endothelial specific genes ICAM-2 and von Willebrand factor and delayed the organization of differentiated endothelial cells into cord-like structures within the growing EBs. The same effect was observed when cultures were treated with either antibodies to TGF-β or the latency associated peptide, which neutralize TGF-β. Conversely, the organization of endothelial cells was enhanced by incubation with TGF-β1. These results suggest that during differentiation of ES cells LTBP-1 facilitates endothelial cell organization via a TGF-β–dependent mechanism.


Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 813-821 ◽  
Author(s):  
T. Tada ◽  
M. Tada ◽  
N. Takagi

A cytogenetic and biochemical study of balloon-like cystic embryoid bodies, formed by newly established embryonic stem (ES) cell lines having a cytogenetically or genetically marked X chromosome, revealed that the paternally derived X chromosome was inactivated in the majority of cells in the yolk sac-like mural region consisting of the visceral endoderm and mesoderm. The nonrandomness was less evident in the more solid polar region containing the ectodermal vesicle, mesoderm and visceral endoderm. Since the same was true in embryoid bodies derived from ES cells at the 30th subculture generation, it was concluded that the imprinting responsible for the preferential inactivation of the paternal X chromosome that was limited to non-epiblast cells of the female mouse embryos, was stably maintained in undifferentiated ES cells. Differentiating epiblast cells should be able to erase or avoid responding to the imprint.


2001 ◽  
Vol 114 (4) ◽  
pp. 671-676 ◽  
Author(s):  
E. Gustafsson ◽  
C. Brakebusch ◽  
K. Hietanen ◽  
R. Fassler

Tissue-specific gene inactivation using the Cre-loxP system has become an important tool to unravel functions of genes when the conventional null mutation is lethal. We report here the generation of a transgenic mouse line expressing Cre recombinase in endothelial cells. In order to avoid the production and screening of multiple transgenic lines we used embryonic stem cell and embryoid body technology to identify recombinant embryonic stem cell clones with high, endothelial-specific Cre activity. One embryonic stem cell clone that showed high Cre activity in endothelial cells was used to generate germline chimeras. The in vivo efficiency and specificity of the transgenic Cre was analysed by intercrossing the tie-1-Cre line with the ROSA26R reporter mice. At initial stages of vascular formation (E8-9), LacZ staining was detected in almost all cells of the forming vasculature. Between E10 and birth, LacZ activity was detected in most endothelial cells within the embryo and of extra-embryonic tissues such as yolk sac and chorioallantoic placenta. Ectopic expression of Cre was observed in approximately 12–20% of the adult erythroid, myeloid and lymphoid cells and in subregions of the adult brain. These results show that the tie-1-Cre transgenic strain can efficiently direct deletion of floxed genes in endothelial cells in vivo.


Blood ◽  
1996 ◽  
Vol 87 (7) ◽  
pp. 2740-2749 ◽  
Author(s):  
CD Helgason ◽  
G Sauvageau ◽  
HJ Lawrence ◽  
C Largman ◽  
RK Humphries

Little is known about the molecular mechanisms controlling primitive hematopoietic stem cells, especially during embryogenesis. Homeobox genes encode a family of transcription factors that have gained increasing attention as master regulators of developmental processes and recently have been implicated in the differentiation and proliferation of hematopoietic cells. Several Hox homeobox genes are now known to be differentially expressed in various subpopulations of human hematopoietic cells and one such gene, HOXB4, has recently been shown to positively determine the proliferative potential of primitive murine bone marrow cells, including cells with long-term repopulating ability. To determine if this gene might influence hematopoiesis at the earliest stages of development, embryonic stem (ES) cells were genetically modified by retroviral gene transfer to overexpress HOXB4 and the effect on their in vitro differentiation was examined. HOXB4 overexpression significantly increased the number of progenitors of mixed erythroid/myeloid colonies and definitive, but not primitive, erythroid colonies derived from embryoid bodies (EBs) at various stages after induction of differentiation. There appeared to be no significant effect on the generation of granulocytic or monocytic progenitors, nor on the efficiency of EB formation or growth rate. Analysis of mRNA from EBs derived from HOXB4-transduced ES cells on different days of primary differentiation showed a significant increase in adult beta-globin expression, with no detectable effect on GATA-1 or embryonic globin (beta H-1). Thus, HOXB4 enhances the erythropoietic, and possibly more primitive, hematopoietic differentiative potential of ES cells. These results provide new evidence implicating Hox genes in the control of very early stages in the development of the hematopoietic system and highlight the utility of the ES model for gaining insights into the molecular genetic regulation of differentiation and proliferation events.


Sign in / Sign up

Export Citation Format

Share Document