scholarly journals In Vivo Analysis of the Major Exocytosis-sensitive Phosphoprotein in Tetrahymena

1997 ◽  
Vol 139 (5) ◽  
pp. 1197-1207 ◽  
Author(s):  
N. Doane Chilcoat ◽  
Aaron P. Turkewitz

Phosphoglucomutase (PGM) is a ubiquitous highly conserved enzyme involved in carbohydrate metabolism. A number of recently discovered PGM-like proteins in a variety of organisms have been proposed to function in processes other than metabolism. In addition, sequence analysis suggests that several of these may lack PGM enzymatic activity. The best studied PGM-like protein is parafusin, a major phosphoprotein in the ciliate Paramecium tetraurelia that undergoes rapid and massive dephosphorylation when cells undergo synchronous exocytosis of their dense-core secretory granules. Indirect genetic and biochemical evidence also supports a role in regulated exocytotic membrane fusion. To examine this matter directly, we have identified and cloned the parafusin homologue in Tetrahymena thermophila, a ciliate in which protein function can be studied in vivo. The unique T. thermophila gene, called PGM1, encodes a protein that is closely related to parafusin by sequence and by characteristic post-translational modifications. Comparison of deduced protein sequences, taking advantage of the known atomic structure of rabbit muscle PGM, suggests that both ciliate enzymes and all other PGM-like proteins have PGM activity. We evaluated the activity and function of PGM1 through gene disruption. Surprisingly, ΔPGM1 cells displayed no detectable defect in exocytosis, but showed a dramatic decrease in PGM activity. Both our results, and reinterpretation of previous data, suggest that any potential role for PGM-like proteins in regulated exocytosis is unlikely to precede membrane fusion.

2018 ◽  
Author(s):  
Yanhui Hu ◽  
Richelle Sopko ◽  
Verena Chung ◽  
Romain A. Studer ◽  
Sean D. Landry ◽  
...  

AbstractPost-translational modification (PTM) serves as a regulatory mechanism for protein function, influencing stability, protein interactions, activity and localization, and is critical in many signaling pathways. The best characterized PTM is phosphorylation, whereby a phosphate is added to an acceptor residue, commonly serine, threonine and tyrosine. As proteins are often phosphorylated at multiple sites, identifying those sites that are important for function is a challenging problem. Considering that many phosphorylation sites may be non-functional, prioritizing evolutionarily conserved phosphosites provides a general strategy to identify the putative functional sites with regards to regulation and function. To facilitate the identification of conserved phosphosites, we generated a large-scale phosphoproteomics dataset from Drosophila embryos collected from six closely-related species. We built iProteinDB (https://www.flyrnai.org/tools/iproteindb/), a resource integrating these data with other high-throughput PTM datasets, including vertebrates, and manually curated information for Drosophila. At iProteinDB, scientists can view the PTM landscape for any Drosophila protein and identify predicted functional phosphosites based on a comparative analysis of data from closely-related Drosophila species. Further, iProteinDB enables comparison of PTM data from Drosophila to that of orthologous proteins from other model organisms, including human, mouse, rat, Xenopus laevis, Danio rerio, and Caenorhabditis elegans.


1987 ◽  
Vol 105 (1) ◽  
pp. 181-189 ◽  
Author(s):  
M Momayezi ◽  
C J Lumpert ◽  
H Kersken ◽  
U Gras ◽  
H Plattner ◽  
...  

Since it had been previously shown that in Paramecium cells exocytosis involves the dephosphorylation of a 65-kD phosphoprotein (PP), we tried to induce exocytotic membrane fusion by exogenous phosphatases (alkaline phosphatase or calcineurin [CaN]). The occurrence of calmodulin (CaM) at preformed exocytosis sites (Momayezi, M., H. Kersken, U. Gras, J. Vilmart-Seuwen, and H. Plattner, 1986, J. Histochem. Cytochem., 34:1621-1638) and the current finding of the presence of the 65-kD PP and of a CaN-like protein in cell surface fragments ("cortices") isolated from Paramecium cells led us to also test the effect of antibodies (Ab) against CaM or CaN on exocytosis performance. Microinjected anti-CaN Ab strongly inhibit exocytosis. (Negative results with microinjected anti-CaM Ab can easily be explained by the abundance of CaM.) Alternatively, microinjection of a Ca2+-CaM-CaN complex triggers exocytosis. The same occurs with alkaline phosphatase. All these effects can also be mimicked in vitro with isolated cortices. In vitro exocytosis triggered by adding Ca2+-CaM-CaN or alkaline phosphatase is paralleled by dephosphorylation of the 65-kD PP. Exocytosis can also be inhibited in cortices by anti-CaM Ab or anti-CaN Ab. In wild-type cells, compounds that inhibit phosphatase activity, but none that inhibit kinases or proteases, are able to inhibit exocytosis. Exocytosis cannot be induced by phosphatase injection in a membrane-fusion-deficient mutant strain (nd9-28 degrees C) characterized by a defective organization of exocytosis sites (Beisson, J., M. Lefort-Tran, M. Pouphile, M. Rossignol, and B. Satir, 1976, J. Cell Biol., 69:126-143). We conclude that exocytotic membrane fusion requires an adequate assembly of molecular components to allow for the dephosphorylation of a 65-kD PP and that this step is crucial for the induction of exocytotic membrane fusion in Paramecium cells. In vivo this probably involves a Ca2+-CaM-stimulated CaN-like PP phosphatase.


2008 ◽  
Vol 414 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Beiyan Zou ◽  
Huaru Yan ◽  
Fumiko Kawasaki ◽  
Richard W. Ordway

The MAP1 (microtubule-associated protein 1) family is a class of microtubule-binding proteins represented by mammalian MAP1A, MAP1B and the recently identified MAP1S. MAP1A and MAP1B are expressed in the nervous system and thought to mediate interactions of the microtubule-based cytoskeleton in neural development and function. The characteristic structural organization of mammalian MAP1s, which are composed of heavy- and light-chain subunits, requires proteolytic cleavage of a precursor polypeptide encoded by the corresponding map1 gene. MAP1 function in Drosophila appears to be fulfilled by a single gene, futsch. Although the futsch gene product is known to share several important functional properties with mammalian MAP1s, whether it adopts the same basic structural organization has not been addressed. Here, we report the identification of a Drosophila MAP1 light chain, LCf, produced by proteolytic cleavage of a futsch-encoded precursor polypeptide, and confirm co-localization and co-assembly of the heavy chain and LCf cleavage products. Furthermore, the in vivo properties of MAP1 proteins were further defined through precise MS identification of a conserved proteolytic cleavage site within the futsch-encoded MAP1 precursor and demonstration of light-chain diversity represented by multiple LCf variants. Taken together, these findings establish conservation of proteolytic processing and structural organization among mammalian and Drosophila MAP1 proteins and are expected to enhance genetic analysis of conserved MAP1 functions within the neuronal cytoskeleton.


1986 ◽  
Vol 103 (4) ◽  
pp. 1279-1288 ◽  
Author(s):  
J Vilmart-Seuwen ◽  
H Kersken ◽  
R Stürzl ◽  
H Plattner

We have tried to specify a widespread hypothesis on the requirement of ATP for exocytosis (membrane fusion). With Paramecium tetraurelia cells, synchronously (approximately 1 s) exocytosing trichocysts, ATP pools have been measured in different strains, including wild type cells, "non-discharge" (nd), "trichless" (tl), and other mutations. The occurrence of a considerable and rapid ATP consumption also in nd and tl mutations as well as its time course (with a maximum 3-5 s after exocytosis) in exocytosis-competent strains does not match the actual extent of exocytosis performance. However, from in vivo as well as from in vitro experiments, we came to the conclusion that ATP might be required to keep the system in a primed state and its removal might facilitate membrane fusion. (For the study of exocytosis in vitro we have developed a new system, consisting of isolated cortices). In vivo as well as in vitro exocytosis is inhibited by increased levels of ATP or by a nonhydrolyzable ATP analogue. In vitro exocytosis is facilitated in ATP-free media. In vivo-microinjected ATP retards exocytosis in response to chemical triggers, whereas microinjected apyrase triggers exocytosis without exogenous trigger. Experiments with this system also largely exclude any overlaps with other processes that normally accompany exocytosis. Our data also explain why it was frequently assumed that ATP would be required for exocytosis. We conclude that membrane fusion during exocytosis does not require the presence of ATP; the occurrence of membrane fusion might involve the elimination of ATP from primed fusogenic sites; most of the ATP consumption measured in the course of exocytosis may be due to other effects, probably to recovery phenomena.


2007 ◽  
Vol 292 (1) ◽  
pp. R440-R446 ◽  
Author(s):  
John N. Lorenz ◽  
Lois J. Arend ◽  
Rachel Robitz ◽  
Richard J. Paul ◽  
A. John MacLennan

There is growing evidence that sphingosine 1-phosphate (S1P) plays an important role in regulating the development, morphology, and function of the cardiovascular system. There is little data, however, regarding the relative contribution of endogenous S1P and its cognate receptors (referred to as S1P1–5) to cardiovascular homeostasis. We used S1P2 receptor knockout mice (S1P2−/−) to evaluate the role of S1P2 in heart and vascular function. There were no significant differences in blood pressure between wild-type and S1P2−/− mice, measured in awake mice. Cardiac function, evaluated in situ by using a Millar catheter, was also not different in S1P2−/− mice under baseline or stimulated conditions. In vivo analysis of vascular function by flowmetry revealed decreases in mesenteric and renal resistance in S1P2−/− mice, especially during vasoconstriction with phenylephrine. In intact aortic rings, the concentration-force relations for both KCl and phenylephrine were right shifted in S1P2−/− mice, whereas the maximal isometric forces were not different. By contrast, in deendothelialized rings the concentration-force relations were not different but the maximal force was significantly greater in S1P2−/− aorta. Histologically, there were no apparent differences in vascular morphology. These data suggest that the S1P2 receptor plays an important role in the function of the vasculature and is an important mediator of normal hemodynamics. This is mediated, at least in part, through an effect on the endothelium, but direct effects on vascular smooth muscle cannot be ruled out and require further investigation.


2019 ◽  
Vol 63 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Thomas O. Tolsma ◽  
Jeffrey C. Hansen

Abstract The dynamic structure of chromatin is linked to gene regulation and many other biological functions. Consequently, it is of importance to understand the factors that regulate chromatin dynamics. While the in vivo analysis of chromatin has verified that histone post-translational modifications play a role in modulating DNA accessibility, the complex nuclear environment and multiplicity of modifications prevents clear conclusions as to how individual modifications influence chromatin dynamics in the cell. For this reason, in vitro analyses of model reconstituted nucleosomal arrays has been pivotal in understanding the dynamic nature of chromatin compaction and the affects that specific post-translational modifications can have on the higher order chromatin structure. In this mini-review, we briefly describe the dynamic chromatin structures that have been observed in vitro and the environmental conditions that give rise to these various conformational states. Our focus then turns to a discussion of the specific histone post-translational modifications that have been shown to alter formation of these higher order chromatin structures in vitro and how this may relate to the biological state and accessibility of chromatin in vivo.


Author(s):  
Zhe Liu ◽  
Huanying Zheng ◽  
Runyu Yuan ◽  
Mingyue Li ◽  
Huifang Lin ◽  
...  

AbstractTwo notable features have been identified in the SARS-CoV-2 genome: (1) the receptor binding domain of SARS-CoV-2; (2) a unique insertion of twelve nucleotide or four amino acids (PRRA) at the S1 and S2 boundary. For the first feature, the similar RBD identified in SARs-like virus from pangolin suggests the RBD in SARS-CoV-2 may already exist in animal host(s) before it transmitted into human. The left puzzle is the history and function of the insertion at S1/S2 boundary, which is uniquely identified in SARS-CoV-2. In this study, we identified two variants from the first Guangdong SARS-CoV-2 cell strain, with deletion mutations on polybasic cleavage site (PRRAR) and its flank sites. More extensive screening indicates the deletion at the flank sites of PRRAR could be detected in 3 of 68 clinical samples and half of 22 in vitro isolated viral strains. These data indicate (1) the deletion of QTQTN, at the flank of polybasic cleavage site, is likely benefit the SARS-CoV-2 replication or infection in vitro but under strong purification selection in vivo since it is rarely identified in clinical samples; (2) there could be a very efficient mechanism for deleting this region from viral genome as the variants losing 23585-23599 is commonly detected after two rounds of cell passage. The mechanistic explanation for this in vitro adaptation and in vivo purification processes (or reverse) that led to such genomic changes in SARS-CoV-2 requires further work. Nonetheless, this study has provided valuable clues to aid further investigation of spike protein function and virus evolution. The deletion mutation identified in vitro isolation should be also noted for current vaccine development.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2745-2752 ◽  
Author(s):  
Timothy Gainsford ◽  
Andrew W. Roberts ◽  
Shinya Kimura ◽  
Donald Metcalf ◽  
Glenn Dranoff ◽  
...  

Mice lacking thrombopoietin (TPO), or its receptor c-Mpl, display defective megakaryocyte and platelet development and deficiencies in progenitor cells of multiple hematopoietic lineages. The contribution of alternative cytokines to thrombopoiesis in the absence of TPO signalling was examined in mpl−/− mice. Analysis of serum and organ-conditioned media showed no evidence of a compensatory overproduction of megakaryocytopoietic cytokines. However, consistent with a potential role in vivo, when injected intompl−/− mice, interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) retained the capacity to elevate megakaryocytes and their progenitors in hematopoietic tissues and increase circulating platelet numbers. However, double mutant mice bred to carry genetic defects both in c-Mpl and IL-3 or the alpha chain of the IL-3 receptor, displayed no greater deficiencies in megakaryocytes or platelets than mpl-deficient animals, suggesting absence of a physiologic role for IL-3 in the residual megakaryocytopoiesis and platelet production in these mice.


2011 ◽  
Vol 434 (3) ◽  
pp. 445-457 ◽  
Author(s):  
Michael R. Logan ◽  
Lynden Jones ◽  
Daniel Forsberg ◽  
Alex Bodman ◽  
Alicia Baier ◽  
...  

RhoGDIs (Rho GDP-dissociation inhibitors) are the natural inhibitors of Rho GTPases. They interfere with Rho protein function by either blocking upstream activation or association with downstream signalling molecules. RhoGDIs can also extract membrane-bound Rho GTPases to form soluble cytosolic complexes. We have shown previously that purified yeast RhoGDI Rdi1p, can inhibit vacuole membrane fusion in vitro. In the present paper we functionally dissect Rdi1p to discover its mode of regulating membrane fusion. Overexpression of Rdi1p in vivo profoundly affected cell morphology including increased actin patches in mother cells indicative of polarity defects, delayed ALP (alkaline phosphatase) sorting and the presence of highly fragmented vacuoles indicative of membrane fusion defects. These defects were not caused by the loss of typical transport and fusion proteins, but rather were linked to the reduction of membrane localization and activation of Cdc42p and Rho1p. Subcellular fractionation showed that Rdi1p is predominantly a cytosolic monomer, free of bound Rho GTPases. Overexpression of endogenous Rdi1p, or the addition of exogenous Rdi1p, generated stable cytosolic complexes. Rdi1p structure–function analysis showed that membrane association via the C-terminal β-sheet domain was required for the functional inhibition of membrane fusion. Furthermore, Rdi1p inhibited membrane fusion through the binding of Rho GTPases independent from its extraction activity.


Sign in / Sign up

Export Citation Format

Share Document