scholarly journals gp25L/emp24/p24 Protein Family Members of the cis-Golgi Network Bind Both COP I and II Coatomer

1998 ◽  
Vol 140 (4) ◽  
pp. 751-765 ◽  
Author(s):  
Michel Dominguez ◽  
Kurt Dejgaard ◽  
Joachim Füllekrug ◽  
Sophie Dahan ◽  
Ali Fazel ◽  
...  

Abstract. Five mammalian members of the gp25L/ emp24/p24 family have been identified as major constituents of the cis-Golgi network of rat liver and HeLa cells. Two of these were also found in membranes of higher density (corresponding to the ER), and this correlated with their ability to bind COP I in vitro. This binding was mediated by a K(X)KXX-like retrieval motif present in the cytoplasmic domain of these two members. A second motif, double phenylalanine (FF), present in the cytoplasmic domain of all five members, was shown to participate in the binding of Sec23 (COP II). This motif is part of a larger one, similar to the F/YXXXXF/Y strong endocytosis and putative AP2 binding motif. In vivo mutational analysis confirmed the roles of both motifs so that when COP I binding was expected to be impaired, cell surface expression was observed, whereas mutation of the Sec23 binding motif resulted in a redistribution to the ER. Surprisingly, upon expression of mutated members, steady-state distribution of unmutated ones shifted as well, presumably as a consequence of their observed oligomeric properties.

2002 ◽  
Vol 157 (7) ◽  
pp. 1223-1232 ◽  
Author(s):  
Andrew W. Schaefer ◽  
Yoshimasa Kamei ◽  
Hiroyuki Kamiguchi ◽  
Eric V. Wong ◽  
Iris Rapoport ◽  
...  

Dynamic regulation of the cell surface expression of adhesion molecules is an important mechanism for controlling neuronal growth cone motility and guidance. Clathrin-mediated vesicular internalization of L1 via the tyrosine-based endocytosis motif YRSL regulates adhesion and signaling by this Ig superfamily molecule. Here, we present evidence that tyrosine-1176 (Y1176) of the YRSL motif is phosphorylated in vivo. The nonreceptor tyrosine kinase (p60src) is implicated in L1-mediated neurite outgrowth, and we find that p60src phosphorylates Y1176 in vitro. Phosphorylation of Y1176 prevents L1 binding to AP-2, an adaptor required for clathrin-mediated internalization of L1. mAb 74-5H7 recognizes the sequence immediately NH2-terminal to the tyrosine-based motif and binds L1 only when Y1176 is dephosphorylated. 74-5H7 identifies a subset of L1 present at points of cell–cell contact and in vesicle-like structures that colocalize with an endocytosis marker. L1–L1 binding or L1 cross-linking induces a rapid increase in 74-5H7 immunoreactivity. Our data suggest a model in which homophilic binding or L1 cross-linking triggers transient dephosphorylation of the YRSL motif that makes L1 available for endocytosis. Thus, the regulation of L1 endocytosis through dephosphorylation of Y1176 is a critical regulatory point of L1-mediated adhesion and signaling.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4012-4012
Author(s):  
Andrew R Cuddihy ◽  
Parisa Asvadi ◽  
Rosanne Dunn ◽  
Tiffany T. Khong ◽  
Andrew Spencer

Abstract Abstract 4012 Multiple Myeloma (MM) is a cancer caused by the proliferation of malignant clonal plasma cells in the bone marrow and accounts for 10% of all hematologic malignancies. Recent advances have been made in the treatment and management of MM, however, despite these advances the majority of patients will ultimately relapse and die from their disease within 3–5 years from diagnosis. Several novel therapeutic approaches, including the use of antibody-based therapies, are being investigated to further improve the treatment of MM. MDX-1097 is a chimeric monoclonal antibody being assessed as a single agent in a Phase 2 clinical trial for the treatment of kappa light-chain restricted (κ-type) MM. MDX-1097 binds to the kappa myeloma antigen (KMA), a tumor-specific membrane-associated protein expressed on malignant plasma cells from patients with K-type MM. Previously we have demonstrated that MDX-1097 exerts its anti-tumour effects through multiple mechanisms, including antibody-dependent cell cytotoxicity (ADCC) in the presence of either normal human peripheral blood mononuclear cells (PBMCs) or purified natural killer (NK cells). The immunomodulatory drugs (IMiDs) lenalidomide (Revlimid) and pomalidomide (Actimid) are currently in use or being assessed for the treatment of MM. These IMiDs have been shown to exert their anti-tumor effects both directly, via apoptotic mechanisms, and indirectly via a number of different mechanisms including the augmentation of NK-dependent cellular cytotoxicity. In this study we report that IMiDs and MDX-1097 co-operate to promote enhanced ADCC of MM cells. In vitro treatment of normal PBMCs with IMiDs led to a 1.4-fold higher level of ADCC-mediated cell death of MDX-1097 spiked JJN3 cells (a κ-type MM cell line) compared with vehicle-treated PBMCs from the same donor. Similarly, in vivo lenalidomide exposed PBMCs isolated from a MM patient were, on average, 1.8-fold more effective in killing MDX-1097 spiked JJN3 cells in vitro compared to PBMC obtained from the same patient prior to lenalidomide treatment. Treatment of JJN3 cells with IMiDs resulted in significantly increased cell surface expression of KMA (lenalidomide: 1.9-fold, p < 0.001; pomalidomide: 2.3-fold, p < 0.01). These IMiD-treated JJN3 cells, when spiked with MDX-1097 were 1.7-fold more susceptible to ADCC-mediated cell death in the presence of untreated PBMCs, compared to JJN3 cells treated with vehicle alone. This difference in sensitivity to ADCC mediated cell death is presumably due to increased KMA expression resulting in more binding sites for MDX-1097, therefore facilitating recruitment of PB immune effector cells. Furthermore, combining IMiD-treated PBMCs with IMiD-treated, MDX-1097 spiked JJN3 cells resulted in a further increment in ADCC-mediated JJN3 cell death. This study demonstrates that in vivo and in vitro treatment of PBMCs with IMiDs engages the PB immune effector cells, leading to increased ADCC-induced κ-type MM cell death in vitro in the presence of MDX-1097. IMiDs also increase cell surface expression of KMA, leading to increased MDX-1097 binding and in turn also enhancing ADCC-induced MM cell killing. Our data provides a rationale for the clinical evaluation of a combination therapy involving both IMiDs and MDX-1097 for the treatment of k-type MM. Disclosures: Cuddihy: Immune System Therapeutics Ltd: Research Funding. Asvadi:Immune System Therapeutics Ltd: Employment. Dunn:Immune System Therapeutics Ltd: Employment, Equity Ownership. Spencer:Immune System Therapeutics Ltd: Research Funding.


2008 ◽  
Vol 295 (1) ◽  
pp. G16-G26 ◽  
Author(s):  
Mubeen Jafri ◽  
Bryan Donnelly ◽  
Steven Allen ◽  
Alex Bondoc ◽  
Monica McNeal ◽  
...  

Inoculation of BALB/c mice with rhesus rotavirus (RRV) in the newborn period results in biliary epithelial cell (cholangiocyte) infection and the murine model of biliary atresia. Rotavirus infection of a cell requires attachment, which is governed in part by cell-surface expression of integrins such as α2β1. We hypothesized that cholangiocytes were susceptible to RRV infection because they express α2β1. RRV attachment and replication was measured in cell lines derived from cholangiocytes and hepatocytes. Flow cytometry was performed on these cell lines to determine whether α2β1 was present. Cholangiocytes were blocked with natural ligands, a monoclonal antibody, or small interfering RNA against the α2-subunit and were infected with RRV. The extrahepatic biliary tract of newborn mice was screened for the expression of the α2β1-integrin. Newborn mice were pretreated with a monoclonal antibody against the α2-subunit and were inoculated with RRV. RRV attached and replicated significantly better in cholangiocytes than in hepatocytes. Cholangiocytes, but not hepatocytes, expressed α2β1 in vitro and in vivo. Blocking assays led to a significant reduction in attachment and yield of virus in RRV-infected cholangiocytes. Pretreatment of newborn pups with an anti-α2 monoclonal antibody reduced the ability of RRV to cause biliary atresia in mice. Cell-surface expression of the α2β1-integrin plays a role in the mechanism that confers cholangiocyte susceptibility to RRV infection.


2004 ◽  
Vol 78 (19) ◽  
pp. 10588-10597 ◽  
Author(s):  
Michael Schindler ◽  
Jan Münch ◽  
Matthias Brenner ◽  
Christiane Stahl-Hennig ◽  
Jacek Skowronski ◽  
...  

ABSTRACT A variety of simian immunodeficiency virus (SIVmac) nef mutants have been investigated to clarify which in vitro Nef functions contribute to efficient viral replication and pathogenicity in rhesus macaques. Most of these nef alleles, however, were only functionally characterized for their ability to down-modulate CD4 and class I major histocompatibility complex (MHC-I) cell surface expression and to enhance SIV replication and infectivity. To obtain information on the in vivo relevance of more recently established Nef functions, we examined the ability of a large panel of constructed SIVmac Nef mutants and of variants that emerged in infected macaques to down-regulate CD3, CD28, and MHC-II and to up-regulate the MHC-II-associated invariant chain (Ii). We found that all these four Nef functions were restored in SIV-infected macaques. In most cases, however, the initial mutations and the changes selected in vivo affected several in vitro Nef functions. For example, truncated Nef proteins that emerged in animals infected with SIVmac239 containing a 152-bp deletion in nef efficiently modulated both CD3 and Ii surface expression. Overall, our results suggest that the effect of Nef on each of the six cellular receptors investigated contributes to viral fitness in the infected host but also indicate that modulation of CD3, MHC-I, MHC-II, or Ii surface expression alone is insufficient for SIV virulence.


1996 ◽  
Vol 133 (1) ◽  
pp. 159-167 ◽  
Author(s):  
A Saada ◽  
F Reichert ◽  
S Rotshenker

Peripheral nerve injury is followed by Wallerian degeneration which is characterized by cellular and molecular events that turn the degenerating nerve into a tissue that supports nerve regeneration. One of these is the removal, by phagocytosis, of myelin that contains molecules which inhibit regeneration. We have recently documented that the scavenger macrophage and Schwann cells express the galactose-specific lectin MAC-2 which is significant to myelin phagocytosis. In the present study we provide evidence for a mechanism leading to the augmented expression of cell surface MAC-2. Nerve lesion causes noneuronal cells, primarily fibroblasts, to produce the cytokine granulocyte macrophage-colony stimulating factor (GM-CSF). In turn, GM-CSF induces Schwann cells and macrophages to up-regulate surface expression of MAC-2. The proposed mechanism is based on the following novel observations. GM-CSF mRNA was detected by PCR in in vitro and in vivo degenerating nerves, but not in intact nerves. The GM-CSF molecule was detected by ELISA in medium conditioned by in vitro and in vivo degenerating peripheral nerves as of the 4th h after injury. GM-CSF activity was demonstrated by two independent bioassays, and repressed by activity blocking antibodies. Significant levels of GM-CSF were produced by nerve derived fibroblasts, but neither by Schwann cells nor by nerve derived macrophages. Mouse rGM-CSF enhanced MAC-2 production in nerve explants, and up-regulated cell surface expression of MAC-2 by Schwann cells and macrophages. Interleukin-1 beta up-regulated GM-CSF production thus suggesting that injury induced GM-CSF production may be mediated by interleukin-1 beta. Our findings highlight the fact that fibroblasts, by producing GM-CSF and thereby affecting macrophage and Schwann function, play a significant role in the cascade of molecular events and cellular interactions of Wallerian degeneration.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2789-2789
Author(s):  
Lindsey F Call ◽  
Sommer Castro ◽  
Thao T. Tang ◽  
Cynthia Nourigat-Mckay ◽  
LaKeisha Perkins ◽  
...  

Abstract Adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) has achieved impressive outcomes in the treatment of refractory/relapsed B-ALL, providing potentially curative treatment options for these patients. The use of CAR T in AML, however, is still in its infancy with limitations due to the innate heterogeneity associated with AML and the lack of AML-specific targets for therapeutic development. The CRLF2 gene encodes for thymic stromal lymphopoietin receptor (TSLPR) and has previously been shown to be highly upregulated in a subset of children and adults with B-ALL. Targeting TSLPR with CAR T cells demonstrates potent anti-leukemia activity against TSLPR-positive B-ALL (PMID 26041741). Through Target Pediatric AML (TpAML), we profiled the transcriptome of nearly 3000 children and young adults with AML and identified CRLF2 (TSLPR) to be highly expressed in a subset of AML, including the majority of AML harboring KM2TA (aka MLL) fusions. TSLPR cell surface expression was validated in primary patient samples using flow cytometry, which showed uniform expression of TSLPR on AML blasts. Given that TSLPR is expressed in AML with confirmed cell surface expression, we developed TSLPR-directed CAR T for preclinical evaluation in AML. We generated a TSLPR-directed CAR using the single-chain variable fragment (scFv) derived from an anti-TSLPR binder (clone 3G1, MD Anderson), IgG4 spacer and 41-BB/CD3zeta signaling domains. The in vitro cytotoxicity of TSLPR CAR T cells was evaluated against the REH-1 cell line and primary AML specimens. TSLPR CAR T cells demonstrated anti-leukemia activity against REH-1 as well as against primary AML specimens. To evaluate the in vivo efficacy of TSLPR CAR T cells, we developed a patient-derived xenograft (PDX) model using bone marrow cells from a TSLPR-positive patient. These cells provided a robust model system to evaluate the in vivo activity of TSLPR CAR T cells, as they produced an aggressive leukemia in humanized NSG-SGM3 mice. The PDX generated from these cells died within 2 months of transplant with significant leukemia infiltration into the bone marrow, liver, and spleen. In the in vivo study, the leukemia burden was assessed by flow cytometric analysis of AML cells in the peripheral blood and bone marrow aspirates following treatment with unmodified control or TSLPR CAR T cells given at 10x10 6 T cells per mouse. After CAR T treatment, we detected a significant decrease in leukemia infiltration into the peripheral blood and bone marrow in the CAR T-treated mice compared to mice that received unmodified T cells. In this study, we report that similar to B-ALL, CRLF2 (TSLPR) is overexpressed in a subset of AML, providing a strategy to eliminate AML cells with CAR T cell therapy. We validated the cell surface expression of TSLPR and showed that the expression is uniform across AML specimens. We further demonstrate that CAR T cells targeting TSLPR were effective in eliminating AML cells in vitro and in vivo. Given that TSLPR is highly expressed in the KMT2A-rearranged AML, a subtype that is associated with poor outcomes, TSLPR-directed CAR T cells represent a promising immunotherapy for this high-risk AML subset. Disclosures Pardo: Hematologics, Inc.: Current Employment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3894-3894
Author(s):  
Angela Schulz ◽  
Claudia Dürr ◽  
Thorsten Zenz ◽  
Stephan Stilgenbauer ◽  
Peter Lichter ◽  
...  

Abstract Abstract 3894 Chronic lymphocytic leukemia (CLL) cells are highly dependent on their microenvironment. External stimuli provided by bone marrow stromal cells or non-malignant leukocytes are required for their survival and proliferation. Interestingly, peripheral blood-derived monocytes differentiate in the presence of CLL cells to so-called Nurse-like cells (NLCs), which are round or fibroblast-shaped adherent cells that were shown to promote survival of CLL cells in vitro and to exist in lymph nodes of CLL patients. In search of new therapeutic options for patients with CLL, the immunomodulatory drug lenalidomide turned out to have significant clinical activity in CLL. Lenalidomide does not induce apoptosis in CLL cells directly, but is rather believed to act via the microenvironment. Several studies described that it alters cytokine levels and the activation status of the cells. Further, a CLL-specific T-cell defect was shown to be repaired by lenalidomide, which might represent a major activity of this drug in CLL. However, its mechanism of action seems to be complex and is not well understood. As monocytes as well as NLCs are very effective in maintaining survival of CLL cells, we aimed to investigate whether lenalidomide interferes with these supportive cell-cell interactions. To do this, we established primary co-cultures of monocytes and CLL cells in the presence or absence of lenalidomide and observed a significantly decreased viability of CLL cells after 14 days of treatment, suggesting an impact of this drug on the survival support of NLCs. Therefore, we analyzed the immunophenotype of NLCs by flow cytometry, as well as the secretion of cytokines in the co-cultures by ELISA and antibody-coupled bead arrays. Among the effects induced by lenalidomide, we observed reduced cell surface expression of the MHC II protein HLA-DR on NLCs as well as lower levels of the chemokine CCL2, but higher levels of IL-10 in the culture supernatant, indicating an altered inflammatory milieu in the co-cultures. The enhanced IL-10 levels resulted in an increase in STAT1 phosphorylation in CLL cells as measured by Western blot analysis. As a consequence, enhanced expression of the adhesion molecule ICAM-1 (CD54) and an altered expression of cytoskeletal genes (e.g. RHOC and CORO1B) were observed in CLL cells after lenalidomide treatment. Chemotaxis assays using transwell culture dishes and SDF1-α as chemoattractant revealed an impaired migratory potential of lenalidomide-treated CLL cells, which was not due to reduced expression of the SDF1-α receptor CXCR4. In summary, our data show that lenalidomide reduces the survival support of NLCs for CLL cells in vitro, suggesting that this drug effects the myeloid microenvironment in CLL in vivo. Furthermore, lenalidomide impairs the migratory potential of CLL cells which may affect circulation and homing of CLL cells in vivo. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 113 (45) ◽  
pp. 12780-12785 ◽  
Author(s):  
Andrey S. Dobroff ◽  
Sara D’Angelo ◽  
Bedrich L. Eckhardt ◽  
Fortunato Ferrara ◽  
Daniela I. Staquicini ◽  
...  

Inflammatory breast carcinoma (IBC) is one of the most lethal forms of human breast cancer, and effective treatment for IBC is an unmet clinical need in contemporary oncology. Tumor-targeted theranostic approaches are emerging in precision medicine, but only a few specific biomarkers are available. Here we report up-regulation of the 78-kDa glucose-regulated protein (GRP78) in two independent discovery and validation sets of specimens derived from IBC patients, suggesting translational promise for clinical applications. We show that a GRP78-binding motif displayed on either bacteriophage or adeno-associated virus/phage (AAVP) particles or loop-grafted onto a human antibody fragment specifically targets orthotopic IBC and other aggressive breast cancer models in vivo. To evaluate the theranostic value, we used GRP78-targeting AAVP particles to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) transgene, obtaining simultaneous in vivo diagnosis through PET imaging and tumor treatment by selective activation of the prodrug ganciclovir at tumor sites. Translation of this AAVP system is expected simultaneously to image, monitor, and treat the IBC phenotype and possibly other aggressive (e.g., invasive and/or metastatic) subtypes of breast cancer, based on the inducible cell-surface expression of the stress-response chaperone GRP78, and possibily other cell-surface receptors in human tumors.


2009 ◽  
Vol 296 (3) ◽  
pp. E549-E558 ◽  
Author(s):  
Eric P. Plaisance ◽  
Martina Lukasova ◽  
Stefan Offermanns ◽  
Youyan Zhang ◽  
Guoqing Cao ◽  
...  

Niacin (nicotinic acid) has recently been shown to increase serum adiponectin concentrations in men with the metabolic syndrome. However, little is known about the mechanism(s) by which niacin regulates the intracellular trafficking and secretion of adiponectin. Since niacin appears to exert its effects on lipolysis through receptor (GPR109A)-dependent and -independent pathways, the purpose of this investigation was to examine the role of the recently identified GPR109A receptor in adiponectin secretion. Initial in vivo studies in rats demonstrated that niacin (30 mg/kg po) acutely increases serum adiponectin concentrations, whereas it decreases NEFAs. Further in vitro studies demonstrated an increase in adiponectin secretion and a decrease in lipolysis in primary adipocytes following treatment with niacin or β-hydroxybutyrate (an endogenous ligand of the GPR109A receptor), but these effects were blocked when adipocytes were pretreated with pertussis toxin. Niacin had no effect on adiponectin secretion or lipolysis in 3T3-L1 adipocytes, which have limited cell surface expression of the GPR109A receptor. To further substantiate these in vitro findings, wild-type and GPR109A receptor knockout mice were administered a single dose of niacin or placebo, and serum was obtained for the determination of adiponectin and NEFA concentrations. Serum adiponectin concentrations increased and serum NEFAs decreased in the wild-type mice within 10 min following niacin administration. However, niacin administration had no effect on adiponectin and NEFA concentrations in the GPR109A receptor knockout mice. These results demonstrate that the GPR109A receptor plays an important role in the dual regulation of adiponectin secretion and lipolysis.


Sign in / Sign up

Export Citation Format

Share Document