scholarly journals Mutant Rab7 Causes the Accumulation of Cathepsin D and Cation-independent Mannose 6–Phosphate Receptor in an Early Endocytic Compartment

1998 ◽  
Vol 140 (5) ◽  
pp. 1075-1089 ◽  
Author(s):  
Barry Press ◽  
Yan Feng ◽  
Bernard Hoflack ◽  
Angela Wandinger-Ness

Stable BHK cell lines inducibly expressing wild-type or dominant negative mutant forms of the rab7 GTPase were isolated and used to analyze the role of a rab7-regulated pathway in lysosome biogenesis. Expression of mutant rab7N125I protein induced a dramatic redistribution of cation-independent mannose 6–phosphate receptor (CI-MPR) from its normal perinuclear localization to large peripheral endosomes. Under these circumstances ∼50% of the total receptor and several lysosomal hydrolases cofractionated with light membranes containing early endosome and Golgi markers. Late endosomes and lysosomes were contained exclusively in well-separated, denser gradient fractions. Newly synthesized CI-MPR and cathepsin D were shown to traverse through an early endocytic compartment, and functional rab7 was crucial for delivery to later compartments. This observation was evidenced by the fact that 2 h after synthesis, both markers were more prevalent in fractions containing light membranes. In addition, both were sensitive to HRP-DAB– mediated cross-linking of early endosomal proteins, and the late endosomal processing of cathepsin D was impaired. Using similar criteria, the lysosomal membrane glycoprotein 120 was not found accumulated in an early endocytic compartment. The data are indicative of a post-Golgi divergence in the routes followed by different lysosome-directed molecules.

1997 ◽  
Vol 110 (18) ◽  
pp. 2215-2225 ◽  
Author(s):  
J.C. Guillemot ◽  
P. Montcourrier ◽  
E. Vivier ◽  
J. Davoust ◽  
P. Chavrier

Engagement of the high affinity IgE receptor (FcepsilonRI) in mast cells elicits a series of intracellular signalling events including cytoskeletal reorganization and granule exocytosis. To analyze the coupling of receptor activation to specific cytoskeletal responses, we expressed dominant negative mutant forms of the Rho GTPases CDC42 and Rac1 in rat RBL-2H3 tumor mast cells. We show here that dominant inhibition of CDC42 function decreases cell adhesion, interferes with Fc(epsilon)RI-induced actin plaque assembly and reduced the recruitment of vinculin at the cell-substratum interface, while the inhibitory Rac1 mutant abolishes Fc(epsilon)RI-mediated membrane ruffling. The expression of trans-dominant inhibitory forms of either CDC42 or Rac1 significantly inhibited antigen-induced degranulation. Altogether, our results demonstrate that CDC42 and Rac1 control distinct pathways downstream of FcepsilonRI engagement leading either to the induction of actin plaques, or to the production of membrane ruffles. These two pathways are critically involved during the degranulation response induced by Fc(epsilon)RI aggregation.


2000 ◽  
Vol 151 (6) ◽  
pp. 1207-1220 ◽  
Author(s):  
Mona Wilcke ◽  
Ludger Johannes ◽  
Thierry Galli ◽  
Véronique Mayau ◽  
Bruno Goud ◽  
...  

Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20°C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.


1999 ◽  
Vol 10 (5) ◽  
pp. 1463-1475 ◽  
Author(s):  
Cristina Andrei ◽  
Cecilia Dazzi ◽  
Lavinia Lotti ◽  
Maria Rosaria Torrisi ◽  
Giovanna Chimini ◽  
...  

Interleukin 1β (IL-1β), a secretory protein lacking a signal peptide, does not follow the classical endoplasmic reticulum-to-Golgi pathway of secretion. Here we provide the evidence for a “leaderless” secretory route that uses regulated exocytosis of preterminal endocytic vesicles to transport cytosolic IL-1β out of the cell. Indeed, although most of the IL-1β precursor (proIL-1β) localizes in the cytosol of activated human monocytes, a fraction is contained within vesicles that cofractionate with late endosomes and early lysosomes on Percoll density gradients and display ultrastructural features and markers typical of these organelles. The observation of organelles positive for both IL-1β and the endolysosomal hydrolase cathepsin D or for both IL-1β and the lysosomal marker Lamp-1 further suggests that they belong to the preterminal endocytic compartment. In addition, similarly to lysosomal hydrolases, secretion of IL-1β is induced by acidotropic drugs. Treatment of monocytes with the sulfonylurea glibenclamide inhibits both IL-1β secretion and vesicular accumulation, suggesting that this drug prevents the translocation of proIL-1β from the cytosol into the vesicles. A high concentration of extracellular ATP and hypotonic medium increase secretion of IL-1β but deplete the vesicular proIL-1β content, indicating that exocytosis of proIL-1β–containing vesicles is regulated by ATP and osmotic conditions.


2000 ◽  
Vol 182 (2) ◽  
pp. 540-542 ◽  
Author(s):  
Frank Schulte ◽  
Roman Wieczorke ◽  
Cornelis P. Hollenberg ◽  
Eckhard Boles

ABSTRACT Saccharomyces cerevisiae HTR1 mutants are severely impaired in the uptake of glucose. We have cloned dominantHTR1 mutant alleles and show that they encode mutant forms of the Mth1 protein. Mth1 is shown to be involved in carbon source-dependent regulation of its own, invertase and hexose transporter gene expression. The mutant forms block the transduction of the Snf3- and Rgt2-mediated glucose signals upstream of the Rgt1 transcriptional regulator.


2012 ◽  
Vol 86 (16) ◽  
pp. 8346-8358 ◽  
Author(s):  
Bernardo A. Mainou ◽  
Terence S. Dermody

Rab GTPases play an essential role in vesicular transport by coordinating the movement of various types of cargo from one cellular compartment to another. Individual Rab GTPases are distributed to specific organelles and thus serve as markers for discrete types of endocytic vesicles. Mammalian reovirus binds to cell surface glycans and junctional adhesion molecule-A (JAM-A) and enters cells by receptor-mediated endocytosis in a process dependent on β1 integrin. Within organelles of the endocytic compartment, reovirus undergoes stepwise disassembly catalyzed by cathepsin proteases, which allows the disassembly intermediate to penetrate endosomal membranes and release the transcriptionally active viral core into the cytoplasm. The pathway used by reovirus to traverse the endocytic compartment is largely unknown. In this study, we found that reovirus particles traffic through early, late, and recycling endosomes during cell entry. After attachment to the cell surface, reovirus particles and JAM-A codistribute into each of these compartments. Transfection of cells with constitutively active and dominant-negative Rab GTPases that affect early and late endosome biogenesis and maturation influenced reovirus infectivity. In contrast, reovirus infectivity was not altered in cells expressing mutant Rab GTPases that affect recycling endosomes. Thus, reovirus virions localize to early, late, and recycling endosomes during entry into host cells, but only those that traverse early and late endosomes yield a productive infection.


2008 ◽  
Vol 19 (11) ◽  
pp. 4888-4899 ◽  
Author(s):  
Laura A. Schroder ◽  
Michael V. Ortiz ◽  
William A. Dunn

Several Sec proteins including a guanosine diphosphate/guanosine triphosphate exchange factor for Sar1p have been implicated in autophagy. In this study, we investigated the role of Sar1p in pexophagy by expressing dominant-negative mutant forms of Sar1p in Pichia pastoris. When expressing sar1pT34N or sar1pH79G, starvation-induced autophagy, glucose-induced micropexophagy, and ethanol-induced macropexophagy are dramatically suppressed. These Sar1p mutants did not affect the initiation or expansion of the sequestering membranes nor the trafficking of Atg11p and Atg9p to these membranes during micropexophagy. However, the lipidation of Atg8p and assembly of the micropexophagic membrane apparatus, which are essential to complete the incorporation of the peroxisomes into the degradative vacuole, were inhibited when either Sar1p mutant protein was expressed. During macropexophagy, the expression of sar1pT34N inhibited the formation of the pexophagosome, whereas sar1pH79G suppressed the delivery of the peroxisome from the pexophagosome to the vacuole. The pexophagosome contained Atg8p in wild-type cells, but in cells expressing sar1pH79G these organelles contain both Atg8p and endoplasmic reticulum components as visualized by DsRFP-HDEL. Our results demonstrate key roles for Sar1p in both micro- and macropexophagy.


2019 ◽  
Author(s):  
Dominik P. Buser ◽  
Martin Spiess

AbstractRetrograde protein transport from the cell surface and endosomes to the trans-Golgi network (TGN) is essential for membrane homeostasis in general and for the recycling of mannose-6-phosphate receptors (MPRs) for sorting of lysosomal hydrolases in particular. Several different sorting machineries have been implicated in retrieval from early or late endosomes to the TGN, mostly for the cation-independent MPR (CIMPR), mainly by analysis of steady-state localization and by interaction studies. We employed a nanobody-based sulfation tool to more directly determine transport kinetics from the plasma membrane to the TGN – the site of sulfation – for the cation-dependent MPR (CDMPR) with and without silencing of candidate machinery proteins. The clathrin adaptor AP-1 that operates bidirectionally at the TGN-to-endosome interface, which had been shown to cause reduced sulfation when rapidly depleted, produced hypersulfation of nanobodies internalized by CDMPR upon long-term silencing, reflecting accumulation in the TGN. In contrast, knockdown of retromer (Vps26), epsinR, or Rab9 reduced CDMPR arrival to the TGN. No effect was observed upon silencing of TIP47. Most surprisingly, depletion of the GGA (Golgi-localized, γ-adaptin ear-containing, Arf-binding) proteins inhibited retrograde transport rather than TGN exit. This study illustrates the usefulness of derivatized, sulfation-competent nanobodies to analyze retrograde protein transport to identify the contributions of different machineries.


2008 ◽  
Vol 19 (11) ◽  
pp. 4942-4955 ◽  
Author(s):  
Thomas Falguières ◽  
Pierre-Philippe Luyet ◽  
Christin Bissig ◽  
Cameron C. Scott ◽  
Marie-Claire Velluz ◽  
...  

Endosomes along the degradation pathway leading to lysosomes accumulate membranes in their lumen and thus exhibit a characteristic multivesicular appearance. These lumenal membranes typically incorporate down-regulated EGF receptor destined for degradation, but the mechanisms that control their formation remain poorly characterized. Here, we describe a novel quantitative biochemical assay that reconstitutes the formation of lumenal vesicles within late endosomes in vitro. Vesicle budding into the endosome lumen was time-, temperature-, pH-, and energy-dependent and required cytosolic factors and endosome membrane components. Our light and electron microscopy analysis showed that the compartment supporting the budding process was accessible to endocytosed bulk tracers and EGF receptor. We also found that the EGF receptor became protected against trypsin in our assay, indicating that it was sorted into the intraendosomal vesicles that were formed in vitro. Our data show that the formation of intralumenal vesicles is ESCRT-dependent, because the process was inhibited by the K173Q dominant negative mutant of hVps4. Moreover, we find that the ESCRT-I subunit Tsg101 and its partner Alix control intralumenal vesicle formation, by acting as positive and negative regulators, respectively. We conclude that budding of the limiting membrane toward the late endosome lumen, which leads to the formation of intraendosomal vesicles, is controlled by the positive and negative functions of Tsg101 and Alix, respectively.


2000 ◽  
Vol 148 (3) ◽  
pp. 405-416 ◽  
Author(s):  
Sandrine Middendorp ◽  
Thomas Küntziger ◽  
Yann Abraham ◽  
Simon Holmes ◽  
Nicole Bordes ◽  
...  

Centrosome reproduction by duplication is essential for the bipolarity of cell division, but the molecular basis of this process is still unknown. Mutations in Saccharomyces cerevisiae CDC31 gene prevent the duplication of the spindle pole body (SPB). The product of this gene belongs to the calmodulin super-family and is concentrated at the half bridge of the SPB. We present a functional analysis of HsCEN3, a human centrin gene closely related to the CDC31 gene. Tran- sient overexpression of wild-type or mutant forms of HsCen3p in human cells demonstrates that centriole localization depends on a functional fourth EF-hand, but does not produce mitotic phenotype. However, injection of recombinant HsCen3p or of RNA encoding HsCen3p in one blastomere of two-cell stage Xenopus laevis embryos resulted in undercleavage and inhibition of centrosome duplication. Furthermore, HsCEN3 does not complement mutations or deletion of CDC31 in S. cerevisiae, but specifically blocks SPB duplication, indicating that the human protein acts as a dominant negative mutant of CDC31. Several lines of evidence indicate that HsCen3p acts by titrating Cdc31p-binding protein(s). Our results demonstrate that, in spite of the large differences in centrosome structure among widely divergent species, the centrosome pathway of reproduction is conserved.


Sign in / Sign up

Export Citation Format

Share Document