scholarly journals Integrin Dynamics and Matrix Assembly

2000 ◽  
Vol 148 (5) ◽  
pp. 1075-1090 ◽  
Author(s):  
Roumen Pankov ◽  
Edna Cukierman ◽  
Ben-Zion Katz ◽  
Kazue Matsumoto ◽  
Diane C. Lin ◽  
...  

Fibronectin matrix assembly is a multistep, integrin-dependent process. To investigate the role of integrin dynamics in fibronectin fibrillogenesis, we developed an antibody-chasing technique for simultaneous tracking of two integrin populations by different antibodies. We established that whereas the vitronectin receptor αvβ3 remains within focal contacts, the fibronectin receptor α5β1 translocates from focal contacts into and along extracellular matrix (ECM) contacts. This escalator-like translocation occurs relative to the focal contacts at 6.5 ± 0.7 μm/h and is independent of cell migration. It is induced by ligation of α5β1 integrins and depends on interactions with a functional actin cytoskeleton and vitronectin receptor ligation. During cell spreading, translocation of ligand-occupied α5β1 integrins away from focal contacts and along bundles of actin filaments generates ECM contacts. Tensin is a primary cytoskeletal component of these ECM contacts, and a novel dominant-negative inhibitor of tensin blocked ECM contact formation, integrin translocation, and fibronectin fibrillogenesis without affecting focal contacts. We propose that translocating α5β1 integrins induce initial fibronectin fibrillogenesis by transmitting cytoskeleton-generated tension to extracellular fibronectin molecules. Blocking this integrin translocation by a variety of treatments prevents the formation of ECM contacts and fibronectin fibrillogenesis. These studies identify a localized, directional, integrin translocation mechanism for matrix assembly.

1989 ◽  
Vol 92 (1) ◽  
pp. 67-75 ◽  
Author(s):  
K.R. Fath ◽  
C.J. Edgell ◽  
K. Burridge

The distribution of two integrins, the fibronectin receptor and the vitronectin receptor, has been explored in an endothelium-derived cell line plated onto various substrata. On a fibronectin substratum, in the presence of serum, these cells develop focal contacts that contain the fibronectin receptor, whereas the vitronectin receptor is diffusely distributed over the cell surface. Conversely, cells plated onto vitronectin-coated coverslips concentrate only the vitronectin receptor within focal contacts. The accumulation of the vitronectin receptor within focal contacts also occurs when the cells are plated on uncoated coverslips but in the presence of serum. Therefore, we conclude that under normal culture conditions (i.e. in serum-containing media), the vitronectin receptor is the predominant form of integrin involved in substratum adhesion. This conclusion is supported by experiments in which cells were cultured on fibronectin-coated coverslips in the presence of serum. Initially these cells developed focal contacts containing only the fibronectin receptor. Within several hours, however, there was a progressive replacement of focal contacts containing the fibronectin receptor by focal contacts expressing the vitronectin receptor. After approximately 12 h in culture, most cells contained focal contacts expressing only the vitronectin receptor. Focal contacts containing either the fibronectin or vitronectin receptor were both associated with the termini of stress fibres and contained the proteins talin and vinculin. These observations lead us to propose that the cell does not discriminate between these different integrins when assembling the cytoskeletal components at the cytoplasmic face of focal contacts.


2000 ◽  
Vol 150 (6) ◽  
pp. 1461-1466 ◽  
Author(s):  
Richard L. Roll ◽  
Eve Marie Bauman ◽  
Joel S. Bennett ◽  
Charles S. Abrams

Pleckstrin is a 40-kD phosphoprotein containing NH2- and COOH-terminal pleckstrin homology (PH) domains separated by a disheveled-egl 10-pleckstrin (DEP) domain. After platelet activation, pleckstrin is rapidly phosphorylated by protein kinase C. We reported previously that expressed phosphorylated pleckstrin induces cytoskeletal reorganization and localizes in microvilli along with glycoproteins, such as integrins. Given the role of integrins in cytoskeletal organization and cell spreading, we investigated whether signaling from pleckstrin cooperated with signaling pathways involving the platelet integrin, αIIbβ3. Pleckstrin induced cell spreading in both transformed (COS-1 & CHO) and nontransformed (REF52) cell lines, and this spreading was regulated by pleckstrin phosphorylation. In REF52 cells, pleckstrin-induced spreading was matrix dependent, as evidenced by spreading of these cells on fibrinogen but not on fibronectin. Coexpression with αIIbβ3 did not enhance pleckstrin-mediated cell spreading in either REF52 or CHO cells. However, coexpression of the inactive variant αIIbβ3 Ser753Pro, or β3 Ser753Pro alone, completely blocked pleckstrin-induced spreading. This implies that αIIbβ3 Ser753Pro functions as a competitive inhibitor by blocking the effects of an endogenous receptor that is used in the signaling pathway involved in pleckstrin-induced cell spreading. Expression of a chimeric protein composed of the extracellular and transmembrane portion of Tac fused to the cytoplasmic tail of β3 completely blocked pleckstrin-mediated spreading, whereas chimeras containing the cytoplasmic tail of β3 Ser753Pro or αIIb had no effect. This suggests that the association of an unknown signaling protein with the cytoplasmic tail of an endogenous integrin β-chain is also required for pleckstrin-induced spreading. Thus, expressed phosphorylated pleckstrin promotes cell spreading that is both matrix and integrin dependent. To our knowledge, this is the first example of a mutated integrin functioning as a dominant negative inhibitor.


1996 ◽  
Vol 7 (11) ◽  
pp. 1737-1748 ◽  
Author(s):  
J T Yang ◽  
R O Hynes

alpha 5 beta 1 integrin mediates cell adhesion to extracellular matrix by interacting with fibronectin (FN). Mouse lines carrying null mutations in genes encoding either the alpha 5 integrin subunit or FN have been generated previously. Both mutations are embryonic lethal with overlapping defects, but the defects of alpha 5-null embryos are less severe. Primary embryonic cells lacking alpha 5 beta 1 are able to adhere to FN, form focal contacts, migrate on FN, and assemble FN matrix. These results suggest the involvement of (an)other FN receptors(s). In this study, we examined functions of alpha 4 beta 1 and alpha V integrins in embryonic cells lacking alpha 5 beta 1. Our analysis of cells lacking both alpha 4 beta 1 and alpha 5 beta 1 showed that alpha 4 beta 1 is also not required for these FN-dependent functions. Using alpha V-specific blocking reagents, we showed that alpha V integrins are required for alpha 5-null cells, but not wild-type cells, to adhere and spread on FN. Our data also showed that, although the expression levels of alpha V integrins on the wild-type and alpha 5-null cells are similar, there is an increase in recruitment of alpha V integrins into focal contacts in alpha 5-null cells plated on FN, indicating that alpha V integrins can compensate functionally for the loss of alpha 5 beta 1 in focal contacts of alpha 5-null cells. Finally, our data suggested possible roles for alpha V integrins in replacing the role of alpha 5 beta 1 in FN matrix assembly in vitro and in FN-dependent embryonic functions in vivo.


Blood ◽  
2002 ◽  
Vol 99 (4) ◽  
pp. 1373-1380 ◽  
Author(s):  
Marjan J. T. Veuger ◽  
Mirjam H. M. Heemskerk ◽  
M. Willy Honders ◽  
Roel Willemze ◽  
Renée M. Y. Barge

Development of resistance to cytarabine (AraC) is a major problem in the treatment of patients with acute myeloid leukemia (AML). Inactivation of deoxycytidine kinase (dCK) plays an important role in AraC resistance in vitro. We have identified inactive, alternatively spliced dCK forms in leukemic blasts from patients with resistant AML. Because these dCK-spliced variants were only detectable in resistant AML, it was hypothesized that they might play a role in AraC resistance in vivo. In the current study, the biologic role of the alternatively spliced dCK forms in AraC resistance was further investigated by retroviral transductions in rat leukemic cells. Introduction of inactive, alternatively spliced dCK forms into AraC-resistant K7 cells, with no endogenous wild-type (wt) dCK activity, could not restore AraC sensitivity, whereas wt dCK fully restored the AraC-sensitive phenotype. Transfection of alternatively spliced dCK forms into AraC-sensitive KA cells, as well as in human leukemic U937 cells and in phytohemagglutinin-stimulated T cells, did not significantly change sensitivity toward AraC. In addition, cotransduction of wt dCK with alternatively spliced dCK in K7 cells did not result in altered sensitivity to AraC compared with K7 cells only transduced with wt dCK. These data indicate that the alternatively spliced dCK forms cannot act as a dominant-negative inhibitor on dCK wt activity when they are coexpressed in a single cell. However, a cell expressing alternatively spliced dCK forms that has lost wt dCK expression is resistant to the cytotoxic effects of AraC.


2012 ◽  
Vol 216 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Olivier Le Bacquer ◽  
Gurvan Queniat ◽  
Valery Gmyr ◽  
Julie Kerr-Conte ◽  
Bruno Lefebvre ◽  
...  

Regulated associated protein of mTOR (Raptor) and rapamycin-insensitive companion of mTOR (rictor) are two proteins that delineate two different mTOR complexes, mTORC1 and mTORC2 respectively. Recent studies demonstrated the role of rictor in the development and function of β-cells. mTORC1 has long been known to impact β-cell function and development. However, most of the studies evaluating its role used either drug treatment (i.e. rapamycin) or modification of expression of proteins known to modulate its activity, and the direct role of raptor in insulin secretion is unclear. In this study, using siRNA, we investigated the role of raptor and rictor in insulin secretion and production in INS-1 cells and the possible cross talk between their respective complexes, mTORC1 and mTORC2. Reduced expression of raptor is associated with increased glucose-stimulated insulin secretion and intracellular insulin content. Downregulation of rictor expression leads to impaired insulin secretion without affecting insulin content and is able to correct the increased insulin secretion mediated by raptor siRNA. Using dominant-negative or constitutively active forms of Akt, we demonstrate that the effect of both raptor and rictor is mediated through alteration of Akt signaling. Our finding shed new light on the mechanism of control of insulin secretion and production by the mTOR, and they provide evidence for antagonistic effect of raptor and rictor on insulin secretion in response to glucose by modulating the activity of Akt, whereas only raptor is able to control insulin biosynthesis.


2006 ◽  
Vol 26 (12) ◽  
pp. 4553-4563 ◽  
Author(s):  
Seon-Yong Yeom ◽  
Geun Hyang Kim ◽  
Chan Hee Kim ◽  
Heun Don Jung ◽  
So-Yeon Kim ◽  
...  

ABSTRACT Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic β-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/− mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/− mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/− islets. These results suggest that ASC-2 regulates insulin secretion and β-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.


2004 ◽  
Vol 15 (3) ◽  
pp. 1146-1159 ◽  
Author(s):  
Susan L. Kline-Smith ◽  
Alexey Khodjakov ◽  
Polla Hergert ◽  
Claire E. Walczak

The complex behavior of chromosomes during mitosis is accomplished by precise binding and highly regulated polymerization dynamics of kinetochore microtubules. Previous studies have implicated Kin Is, unique kinesins that depolymerize microtubules, in regulating chromosome positioning. We have characterized the immunofluorescence localization of centromere-bound MCAK and found that MCAK localized to inner kinetochores during prophase but was predominantly centromeric by metaphase. Interestingly, MCAK accumulated at leading kinetochores during congression but not during segregation. We tested the consequences of MCAK disruption by injecting a centromere dominant-negative protein into prophase cells. Depletion of centromeric MCAK led to reduced centromere stretch, delayed chromosome congression, alignment defects, and severe missegregation of chromosomes. Rates of chromosome movement were unchanged, suggesting that the primary role of MCAK is not to move chromosomes. Furthermore, we found that disruption of MCAK leads to multiple kinetochore–microtubule attachment defects, including merotelic, syntelic, and combined merotelic-syntelic attachments. These findings reveal an essential role for Kin Is in prevention and/or correction of improper kinetochore–microtubule attachments.


2002 ◽  
Vol 159 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Ti Cai ◽  
Keigo Nishida ◽  
Toshio Hirano ◽  
Paul A. Khavari

În epidermis, Ras can influence proliferation and differentiation; however, regulators of epidermal Ras function are not fully characterized, and Ras effects on growth and differentiation are controversial. EGF induced Ras activation in epidermal cells along with phosphorylation of the multisubstrate docking protein Gab1 and its binding to SHP-2. Expression of mutant Gab1Y627F deficient in SHP-2 binding or dominant-negative SHP-2C459S reduced basal levels of active Ras and downstream MAPK proteins and initiated differentiation. Differentiation triggered by both Gab1Y627F and SHP-2C459S could be blocked by coexpression of active Ras, consistent with Gab1 and SHP-2 action upstream of Ras in this process. To study the role of Gab1 and SHP-2 in tissue, we generated human epidermis overexpressing active Gab1 and SHP-2. Both proteins stimulated proliferation. In contrast, Gab1Y627F and SHP-2C459S inhibited epidermal proliferation and enhanced differentiation. Consistent with a role for Gab1 and SHP-2 in sustaining epidermal Ras/MAPK activity, Gab1−/− murine epidermis displayed lower levels of active Ras and MAPK with postnatal Gab1−/− epidermis, demonstrating the hypoplasia and enhanced differentiation seen previously with transgenic epidermal Ras blockade. These data provide support for a Ras role in promoting epidermal proliferation and opposing differentiation and indicate that Gab1 and SHP-2 promote the undifferentiated epidermal cell state by facilitating Ras/MAPK signaling.


2004 ◽  
Vol 287 (4) ◽  
pp. E739-E743 ◽  
Author(s):  
Burton F. Holmes ◽  
David B. Lang ◽  
Morris J. Birnbaum ◽  
James Mu ◽  
G. Lynis Dohm

An acute bout of exercise increases muscle GLUT4 mRNA in mice, and denervation decreases GLUT4 mRNA. AMP-activated protein kinase (AMPK) activity in skeletal muscle is also increased by exercise, and GLUT4 mRNA is increased in mouse skeletal muscle after treatment with AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside(AICAR). These findings suggest that AMPK activation might be responsible for the increase in GLUT4 mRNA expression in response to exercise. To investigate the role of AMPK in GLUT4 regulation in response to exercise and denervation, transgenic mice with a mutated AMPK α-subunit (dominant negative; AMPK-DN) were studied. GLUT4 did not increase in AMPK-DN mice that were treated with AICAR, demonstrating that muscle AMPK is inactive. Exercise (two 3-h bouts of treadmill running separated by 1 h of rest) increased GLUT4 mRNA in both wild-type and AMPK-DN mice. Likewise, denervation decreased GLUT4 mRNA in both wild-type and AMPK-DN mice. GLUT4 mRNA was also increased by AICAR treatment in both the innervated and denervated muscles. These data demonstrate that AMPK is not required for the response of GLUT4 mRNA to exercise and denervation.


Sign in / Sign up

Export Citation Format

Share Document