scholarly journals Proteins Needed for Vesicle Budding from the Golgi Complex Are Also Required for the Docking Step of Homotypic Vacuole Fusion

2000 ◽  
Vol 148 (6) ◽  
pp. 1223-1230 ◽  
Author(s):  
Albert Price ◽  
William Wickner ◽  
Christian Ungermann

Vam2p/Vps41p is known to be required for transport vesicles with vacuolar cargo to bud from the Golgi. Like other VAM-encoded proteins, which are needed for homotypic vacuole fusion, we now report that Vam2p and its associated protein Vam6p/Vps39p are needed on each vacuole partner for homotypic fusion. In vitro vacuole fusion occurs in successive steps of priming, docking, and membrane fusion. While priming does not require Vam2p or Vam6p, the functions of these two proteins cannot be fulfilled until priming has occurred, and each is required for the docking reaction which culminates in trans-SNARE pairing. Consistent with their dual function in Golgi vesicle budding and homotypic fusion of vacuoles, approximately half of the Vam2p and Vam6p of the cell are recovered from cell lysates with purified vacuoles.

2008 ◽  
Vol 183 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Alex Engel ◽  
Peter Walter

In the canonical model of membrane fusion, the integrity of the fusing membranes is never compromised, preserving the identity of fusing compartments. However, recent molecular simulations provided evidence for a pathway to fusion in which holes in the membrane evolve into a fusion pore. Additionally, two biological membrane fusion models—yeast cell mating and in vitro vacuole fusion—have shown that modifying the composition or altering the relative expression levels of membrane fusion complexes can result in membrane lysis. The convergence of these findings showing membrane integrity loss during biological membrane fusion suggests new mechanistic models for membrane fusion and the role of membrane fusion complexes.


1992 ◽  
Vol 285 (2) ◽  
pp. 383-385 ◽  
Author(s):  
J M Edwardson ◽  
P U Daniels-Holgate

The fusion of post-Golgi transport vesicles with the plasma membrane is perhaps the least well understood step in the network of intracellular membrane traffic. We have used an ‘in vitro’ system to study this membrane-fusion event. We show here that fusion requires the presence of cytosolic proteins, but not Ca2+, and is inhibited by the non-hydrolysable GTP analogue guanosine 5′-[gamma-thio]triphosphate, which indicates the involvement of a GTP-binding protein.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Michael Zick ◽  
William T Wickner

Past experiments with reconstituted proteoliposomes, employing assays that infer membrane fusion from fluorescent lipid dequenching, have suggested that vacuolar SNAREs alone suffice to catalyze membrane fusion in vitro. While we could replicate these results, we detected very little fusion with the more rigorous assay of lumenal compartment mixing. Exploring the discrepancies between lipid-dequenching and content-mixing assays, we surprisingly found that the disposition of the fluorescent lipids with respect to SNAREs had a striking effect. Without other proteins, the association of SNAREs in trans causes lipid dequenching that cannot be ascribed to fusion or hemifusion. Tethering of the SNARE-bearing proteoliposomes was required for efficient lumenal compartment mixing. While the physiological HOPS tethering complex caused a few-fold increase of trans-SNARE association, the rate of content mixing increased more than 100-fold. Thus tethering has a role in promoting membrane fusion that extends beyond simply increasing the amount of total trans-SNARE complex.


1995 ◽  
Vol 131 (2) ◽  
pp. 311-324 ◽  
Author(s):  
P Espenshade ◽  
R E Gimeno ◽  
E Holzmacher ◽  
P Teung ◽  
C A Kaiser

Temperature-sensitive mutations in the SEC16 gene of Saccharomyces cerevisiae block budding of transport vesicles from the ER. SEC16 was cloned by complementation of the sec16-1 mutation and encodes a 240-kD protein located in the insoluble, particulate component of cell lysates. Sec16p is released from this particulate fraction by high salt, but not by nonionic detergents or urea. Some Sec16p is localized to the ER by immunofluorescence microscopy. Membrane-associated Sec16p is incorporated into transport vesicles derived from the ER that are formed in an in vitro vesicle budding reaction. Sec16p binds to Sec23p, a COPII vesicle coat protein, as shown by the two-hybrid interaction assay and affinity studies in cell extracts. These findings indicate that Sec16p associates with Sec23p as part of the transport vesicle coat structure. Genetic analysis of SEC16 identifies three functionally distinguishable domains. One domain is defined by the five temperature-sensitive mutations clustered in the middle of SEC16. Each of these mutations can be complemented by the central domain of SEC16 expressed alone. The stoichiometry of Sec16p is critical for secretory function since overexpression of Sec16p causes a lethal secretion defect. This lethal function maps to the NH2-terminus of the protein, defining a second functional domain. A separate function for the COOH-terminal domain of Sec16p is shown by its ability to bind Sec23p. Together, these results suggest that Sec16p engages in multiple protein-protein interactions both on the ER membrane and as part of the coat of a completed vesicle.


1991 ◽  
Vol 114 (4) ◽  
pp. 663-670 ◽  
Author(s):  
C d'Enfert ◽  
L J Wuestehube ◽  
T Lila ◽  
R Schekman

Sec12p is an integral membrane protein required in vivo and in vitro for the formation of transport vesicles generated from the ER. Vesicle budding and protein transport from ER membranes containing normal levels of Sec12p is inhibited in vitro by addition of microsomes isolated from a Sec12p-overproducing strain. Inhibition is attributable to titration of a limiting cytosolic protein. This limitation is overcome by addition of a highly enriched fraction of soluble Sar1p, a small GTP-binding protein, shown previously to be essential for protein transport from the ER and whose gene has been shown to interact genetically with sec12. Furthermore, Sar1p binding to isolated membranes is enhanced at elevated levels of Sec12p. Sar1p-Sec12p interaction may regulate the initiation of vesicle budding from the ER.


2014 ◽  
Vol 112 (1) ◽  
pp. 100-105 ◽  
Author(s):  
Anju Sreelatha ◽  
Terry L. Bennett ◽  
Emily M. Carpinone ◽  
Kevin M. O’Brien ◽  
Kamyron D. Jordan ◽  
...  

Vesicle fusion governs many important biological processes, and imbalances in the regulation of membrane fusion can lead to a variety of diseases such as diabetes and neurological disorders. Here we show that the Vibrio parahaemolyticus effector protein VopQ is a potent inhibitor of membrane fusion based on an in vitro yeast vacuole fusion model. Previously, we demonstrated that VopQ binds to the Vo domain of the conserved V-type H+-ATPase (V-ATPase) found on acidic compartments such as the yeast vacuole. VopQ forms a nonspecific, voltage-gated membrane channel of 18 Å resulting in neutralization of these compartments. We now present data showing that VopQ inhibits yeast vacuole fusion. Furthermore, we identified a unique mutation in VopQ that delineates its two functions, deacidification and inhibition of membrane fusion. The use of VopQ as a membrane fusion inhibitor in this manner now provides convincing evidence that vacuole fusion occurs independently of luminal acidification in vitro.


2020 ◽  
Vol 21 (12) ◽  
pp. 4530 ◽  
Author(s):  
Carmen Siebenaller ◽  
Benedikt Junglas ◽  
Annika Lehmann ◽  
Nadja Hellmann ◽  
Dirk Schneider

The inner membrane-associated protein of 30 kDa (IM30) is crucial for the development and maintenance of the thylakoid membrane system in chloroplasts and cyanobacteria. While its exact physiological function still is under debate, it has recently been suggested that IM30 has (at least) a dual function, and the protein is involved in stabilization of the thylakoid membrane as well as in Mg2+-dependent membrane fusion. IM30 binds to negatively charged membrane lipids, preferentially at stressed membrane regions where protons potentially leak out from the thylakoid lumen into the chloroplast stroma or the cyanobacterial cytoplasm, respectively. Here we show in vitro that IM30 membrane binding, as well as membrane fusion, is strongly increased in acidic environments. This enhanced activity involves a rearrangement of the protein structure. We suggest that this acid-induced transition is part of a mechanism that allows IM30 to (i) sense sites of proton leakage at the thylakoid membrane, to (ii) preferentially bind there, and to (iii) seal leaky membrane regions via membrane fusion processes.


2019 ◽  
Vol 218 (3) ◽  
pp. 783-797 ◽  
Author(s):  
Rossella Venditti ◽  
Maria Chiara Masone ◽  
Laura Rita Rega ◽  
Giuseppe Di Tullio ◽  
Michele Santoro ◽  
...  

Phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide with key roles in the Golgi complex, is made by Golgi-associated phosphatidylinositol-4 kinases and consumed by the 4-phosphatase Sac1 that, instead, is an ER membrane protein. Here, we show that the contact sites between the ER and the TGN (ERTGoCS) provide a spatial setting suitable for Sac1 to dephosphorylate PI4P at the TGN. The ERTGoCS, though necessary, are not sufficient for the phosphatase activity of Sac1 on TGN PI4P, since this needs the phosphatidyl-four-phosphate-adaptor-protein-1 (FAPP1). FAPP1 localizes at ERTGoCS, interacts with Sac1, and promotes its in-trans phosphatase activity in vitro. We envision that FAPP1, acting as a PI4P detector and adaptor, positions Sac1 close to TGN domains with elevated PI4P concentrations allowing PI4P consumption. Indeed, FAPP1 depletion induces an increase in TGN PI4P that leads to increased secretion of selected cargoes (e.g., ApoB100), indicating that FAPP1, by controlling PI4P levels, acts as a gatekeeper of Golgi exit.


2004 ◽  
Vol 167 (6) ◽  
pp. 997-1003 ◽  
Author(s):  
Dalu Xu ◽  
Jesse C. Hay

What is the first membrane fusion step in the secretory pathway? In mammals, transport vesicles coated with coat complex (COP) II deliver secretory cargo to vesicular tubular clusters (VTCs) that ferry cargo from endoplasmic reticulum exit sites to the Golgi stack. However, the precise origin of VTCs and the membrane fusion step(s) involved have remained experimentally intractable. Here, we document in vitro direct tethering and SNARE-dependent fusion of endoplasmic reticulum–derived COPII transport vesicles to form larger cargo containers. The assembly did not require detectable Golgi membranes, preexisting VTCs, or COPI function. Therefore, COPII vesicles appear to contain all of the machinery to initiate VTC biogenesis via homotypic fusion. However, COPI function enhanced VTC assembly, and early VTCs acquired specific Golgi components by heterotypic fusion with Golgi-derived COPI vesicles.


1980 ◽  
Vol 46 (1) ◽  
pp. 41-60
Author(s):  
H. Matt ◽  
H. Plattner ◽  
K. Reichel ◽  
M. Lefort-Tran ◽  
J. Beisson

A variety of trigger procedures were applied to analyse the exocytotic capability of different Paramecium tetraurelia strains. 7,S K 40I, kin 24I, and 9 (18 degrees C) are capable of exocytosis (permissive strains), in contrast to nd 6, nd 7, nd 9 (27 degrees C), tam 38 and ftb A, although all procedures used enhance [Ca2+]i in the cytoplasm of all strains tested and although strains nd 6, nd 7 and nd 9 (27 degrees C) contain a full set of morphologically normal trichocysts attended to the cell membrane. The results show that only those strains are permissive which were shown previously to contain a rosette of membrane-integrated particles and a Ca2+-ATPase activity in the cell membrane over the trichocyst attachment (exocytosis) sites. The results from trigger experiments with permissive and non-permissive strains would be compatible with a dual function of rosette particles as Ca2+ pumps and Ca2+ channels. Nevertheless, the latter aspect remains uncertain since we show that experiments along these lines published by others (introducing a Ca2+ ionophore from the outside) involve a solvent-induced artifact (pseudoexocytosis: matrix stretching in the absence of membrane fusion). In all strains, except for tam 38 and ftb A (which have abnormal trichocysts incapable of being attached to the cell membrane), the isolated trichocyst matrix can be transferred from the contracted to the expanded state in vitro with certain trigger procedures. Our data clearly show that an increase of [Ca2+]i in the cytoplasm is not sufficient for exocytosis to occur and that non-permissiveness is somehow due to an inability to perform membrane fusion. It remains open whether the lack of rosettes and Ca2+-ATPase activity at trichocyst attachment sites are primary cause of non-permissiveness.


Sign in / Sign up

Export Citation Format

Share Document