scholarly journals Polarized Insertion of New Membrane from a Cytoplasmic Reservoir during Cleavage of the Drosophila Embryo

2000 ◽  
Vol 150 (4) ◽  
pp. 849-860 ◽  
Author(s):  
Thomas Lecuit ◽  
Eric Wieschaus

Cellularization of the Drosophila embryo is a specialized form of cytokinesis that results in the formation of a polarized epithelium. The mechanisms of membrane growth during cytokinesis are largely unknown. It is also unclear whether membrane growth and polarization represent distinct processes that occur simultaneously or whether growth of the membrane is involved in the emergence of polarity. Using a combination of surface labeling and particles tracking techniques, we monitored the dynamics of marked membrane regions during cellularization. We find that the major source of membrane is intracellular, rather than in the form of a plasma membrane reservoir. Depolymerization of microtubules inhibits the export of a newly synthesized transmembrane protein from the Golgi apparatus to the plasma membrane and simultaneously blocks membrane growth. Membrane insertion occurs in a defined sequence at specific sites, first apical, then apical–lateral. Diffusion of the membrane appears insufficient to compete with the massive local insertion of new membrane. We thus identify a tightly regulated scheme of polarized membrane insertion during cellularization. We propose that such a mechanism could participate in the progressive emergence of apical–basal polarity.

1984 ◽  
Vol 99 (6) ◽  
pp. 2333-2335 ◽  
Author(s):  
M Edidin ◽  
M Zuniga

We have compared the lateral diffusion of intact transmembrane proteins, wild-type H-2Ld antigens, with that of mutants truncated in the cytoplasmic domain. Diffusion coefficients and mobile fractions were similar for all molecules examined, from wild-type Ld antigens with 31 residues on the cytoplasmic side of the plasma membrane to mutants with only four residues in the cytoplasmic domain. This result limits ways in which the lateral diffusion of a major histocompatibility antigen, a transmembrane protein, can be constrained by interactions with other molecules.


Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 1021-1028 ◽  
Author(s):  
C. Hashimoto ◽  
S. Gerttula ◽  
K.V. Anderson

Formation of the Drosophila embryo's dorsal-ventral pattern requires the maternal product of the Toll gene. DNA sequence and genetic analyses together suggested that the Toll gene product is a transmembrane protein which communicates information from an extracytoplasmic compartment to the cytoplasm. Using antibodies as probes, we show that the Toll protein is a 135 × 10(3) Mr glycoprotein which is tightly associated with embryonic membranes. During the syncytial stage when dorsal-ventral polarity is established, the maternal Toll protein is associated with the plasma membrane around the entire embryo. During later embryonic stages, the Toll protein is expressed zygotically on many cell surfaces, possibly to promote cell adhesion. The plasma membrane localization of the Toll protein in the syncytial embryo suggests that transmembrane signaling from the extracellular perivitelline space to the cytoplasm is required for establishment of the embryonic dorsal-ventral pattern.


2019 ◽  
Author(s):  
Omaya Dudin ◽  
Andrej Ondracka ◽  
Xavier Grau-Bové ◽  
Arthur A. B. Haraldsen ◽  
Atsushi Toyoda ◽  
...  

SummaryIn animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an actomyosin network, and reveal the temporal order of its assembly. This leads to the formation of a polarized layer of cells resembling an epithelium. We show that this epithelium-like stage is associated with tightly regulated transcriptional activation of genes involved in cell adhesion. Hereby we demonstrate the presence of a selforganized, clonally-generated, polarized layer of cells in a unicellular relative of animals.


1997 ◽  
Vol 77 (01) ◽  
pp. 143-149 ◽  
Author(s):  
Annelies Schootemeijer ◽  
Gijsbert van Willigen ◽  
Hans van der Vuurst ◽  
Leon G J Tertoolen ◽  
Siegfried W De Laat ◽  
...  

SummaryThe migration of integrins to sites of cell-cell and cell-matrix contact is thought to be important for adhesion strengthening. We studied the lateral diffusion of integrin αIIbβ3 (glycoprotein Ilb/IIIa) in the plasma membrane of a cultured human megakaryocyte by fluorescence recovery after photobleaching of FITC-labelled monovalent Fab fragments directed against the P3 subunit. The diffusion of P3 on the unstimulated megakaryocyte showed a lateral diffusion coefficient (D) of 0.37 X10'9 cm2/s and a mobile fraction of about 50%. Stimulation with ADP (20 μM) or α-thrombin (10 U/ml) at 22° C induced transient decreases in both parameters reducing D to 0.21 X 10‘9 cm2/s and the mobile fraction to about 25%. The fall in D was observed within 1 min after stimulation but the fall in mobile fraction showed a lag phase of 5 min. The lag phase was absent in the presence of Calpain I inhibitor, whereas cytochalasin D completely abolished the decrease in mobile fraction. The data are compatible with the concept that cell activation induces anchorage of 50% of the mobile αIIbβ3 (25% of the whole population of receptor) to the cytoplasmic actin filaments, although, as discussed, other rationals are not ruled out.


2000 ◽  
Vol 74 (18) ◽  
pp. 8692-8699 ◽  
Author(s):  
J. Bradford Bowzard ◽  
Robert J. Visalli ◽  
Carol B. Wilson ◽  
Joshua S. Loomis ◽  
Eric M. Callahan ◽  
...  

ABSTRACT The retroviral Gag protein is capable of directing the production and release of virus-like particles in the absence of all other viral components. Budding normally occurs after Gag is transported to the plasma membrane by its membrane-targeting and -binding (M) domain. In the Rous sarcoma virus (RSV) Gag protein, the M domain is contained within the first 86 amino acids. When M is deleted, membrane association and budding fail to occur. Budding is restored when M is replaced with foreign membrane-binding sequences, such as that of the Src oncoprotein. Moreover, the RSV M domain is capable of targeting heterologous proteins to the plasma membrane. Although the solution structure of the RSV M domain has been determined, the mechanism by which M specifically targets Gag to the plasma membrane rather than to one or more of the large number of internal membrane surfaces (e.g., the Golgi apparatus, endoplasmic reticulum, and nuclear, mitochondrial, or lysosomal membranes) is unknown. To further investigate the requirements for targeting proteins to discrete cellular locations, we have replaced the M domain of RSV with the product of the unique long region 11 (UL11) gene of herpes simplex virus type 1. This 96-amino-acid myristylated protein is thought to be involved in virion transport and envelopment at internal membrane sites. When the first 100 amino acids of RSV Gag (including the M domain) were replaced by the entire UL11 sequence, the chimeric protein localized at and budded into the Golgi apparatus rather than being targeted to the plasma membrane. Myristate was found to be required for this specific targeting, as were the first 49 amino acids of UL11, which contain an acidic cluster motif. In addition to shedding new light on UL11, these experiments demonstrate that RSV Gag can be directed to internal cellular membranes and suggest that regions outside of the M domain do not contain a dominant plasma membrane-targeting motif.


2010 ◽  
Vol 102 (11) ◽  
pp. 593-607 ◽  
Author(s):  
Mateja Erdani Kreft ◽  
Daniele Giandomenico ◽  
Galina V. Beznoussenko ◽  
Nataša Resnik ◽  
Alexander A. Mironov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document