scholarly journals AN ELECTRON MICROSCOPE STUDY OF THE ENDOPLASMIC RETICULUM IN NEWT NOTOCHORD CELLS AFTER DISTURBANCE WITH ULTRASONIC TREATMENT AND SUBSEQUENT REGENERATION

1964 ◽  
Vol 20 (1) ◽  
pp. 175-183 ◽  
Author(s):  
G. G. Selman ◽  
A. Jurand

Ultrasonic treatment of the tails of Triturus alpestris tadpoles, at intensities of 8 to 15 watts/cm2, at 1 megacycle/sec., for 5 minutes, disrupted the epidermis and caused pycnosis in individual cells of the muscle and neural tube, but caused no damage to the notochord that could be detected by light microscopy. Electron microscopy showed that this ultrasonic treatment disordered nearly all the endoplasmic reticulum (ER) of the notochord cells into irregularly rounded vesicles, but within 3 hours after treatment some parallel arrays of normal endoplasmic reticulum were seen near, and continuous with, the outer nuclear membrane. In addition, a re-ordering of the previously disordered ER took place throughout the cytoplasm, in some cases. A classification was made of the state of the ER as shown in electron micrographs of material fixed immediately, 3, and 24 hours after treatment. This showed that more than half the total endoplasmic reticulum in notochord cells was normal again by 24 hours after treatment.

1976 ◽  
Vol 54 (14) ◽  
pp. 1647-1655 ◽  
Author(s):  
W. R. Bushnell ◽  
R. J. Zeyen

Cytoplasmic aggregates that formed in susceptible barley epidermal cells 11-12 h after inoculation with Erysiphe graminis were examined by light microscopy in living specimens and by electron microscopy in fixed specimens. Rapid development of the aggregate (5–10 min) suggested that cytoplasm migrated to the site of each aggregation. The aggregate contained features generally associated with areas of high metabolic and synthetic activity: abundant mitochondria, rough endoplasmic reticulum (associated with smooth cisternae), Golgi bodies, and polyribosomes. Leucoplasts and nuclei were sometimes near aggregates but not consistently. Microbodies and osmiophilic spherosomes were not present.


Author(s):  
J. C. Russ ◽  
E. McNatt

In order to study the retention of copper in cirrhotic liver, rats were made cirrhotic by carbon tetrachloride inhalation twice weekly for three months and fed 0.2% copper acetate ad libidum in drinking water for one month. The liver tissue was fixed in osmium, sectioned approximately 2000 Å thick, and stained with lead citrate. The section was examined in a scanning electron microscope (JEOLCO JSM-2) in the transmission electron mode.Figure 1 shows a typical area that includes a red blood cell in a sinusoid, a disse, and a portion of the cytoplasm of a hepatocyte which contains several mitochondria, peribiliary dense bodies, glycogen granules, and endoplasmic reticulum.


Author(s):  
C. C. Clawson ◽  
L. W. Anderson ◽  
R. A. Good

Investigations which require electron microscope examination of a few specific areas of non-homogeneous tissues make random sampling of small blocks an inefficient and unrewarding procedure. Therefore, several investigators have devised methods which allow obtaining sample blocks for electron microscopy from region of tissue previously identified by light microscopy of present here techniques which make possible: 1) sampling tissue for electron microscopy from selected areas previously identified by light microscopy of relatively large pieces of tissue; 2) dehydration and embedding large numbers of individually identified blocks while keeping each one separate; 3) a new method of maintaining specific orientation of blocks during embedding; 4) special light microscopic staining or fluorescent procedures and electron microscopy on immediately adjacent small areas of tissue.


Author(s):  
Ruchama Baum ◽  
J.T. Seto

The ribonucleic acid (RNA) of paramyxoviruses has been characterized by biochemical and physiochemical methods. However, paramyxovirus RNA molecules have not been studied by electron microscopy. The molecular weights of these single-stranded viral RNA molecules are not known as yet. Since electron microscopy has been found to be useful for the characterization of single-stranded RNA, this investigation was initiated to examine the morphology and length measurements of paramyxovirus RNA's.Sendai virus Z strain and Newcastle disease virus (NDV), Milano strain, were used. For these studies it was necessary to develop a method of extracting RNA molecules from purified virus particles. Highly purified Sendai virus was treated with pronase (300 μg/ml) at 37°C for 30 minutes and the RNA extracted by the sodium dodecyl sulfate (SDS)-phenol procedure.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


1958 ◽  
Vol 4 (3) ◽  
pp. 291-300 ◽  
Author(s):  
Henry Finck

Small pieces of liver from rats subjected to different dietary regimes were fixed by freeze-drying, and postfixed by in vacuo heating and denaturation with alcohol. Specimens were digested with ribo- or deoxyribonuclease, and stained with gallocyanin-chromalum, azure II, the Feulgen procedure or alcoholic platinic tetrabromide. Some specimens were reserved as controls of the effects of enzyme treatment. Stained and unstained specimens were embedded in methacrylate and examined by light and electron microscopy. Basophilic and Feulgen-positive substances, after contact with watery reagents, were found by electron microscopy to exist as small dense granules embedded in a less dense homogeneous matrix, forming the walls of submicroscopic vacuoles. These granules were absent after digestion with nucleodepolymerases. In specimens (unstained, or stained with platinic tetrabromide) which had not passed through water, the dense (basophile) substances in nuclei and cytoplasm were found to exist, not as granules, but as ill defined submicroscopic concentrates which blended imperceptibly into the homogeneous matrix of the vacuolar walls. Objections to the use of stains for improving contrast conditions in electron microscopy of tissues are discussed, and it is concluded that the reagents do not necessarily produce the observed increases in contrast by selectively stabilizing certain structures. The concept of microsomes as pre-existing distinct morphological entities in intact (unhomogenized) cells is thought to be inconsistent with the distribution of basophile substances in frozen-dried liver.


1956 ◽  
Vol 2 (4) ◽  
pp. 445-448 ◽  
Author(s):  
Marie H. Greider ◽  
Wencel J. Kostir ◽  
Walter J. Frajola

An electron microscope study of the nuclear membrane of Amoeba proteus by thin sectioning techniques has revealed an ultrastructure in the outer layer of the membrane that is homologous to the pores and annuli observed in the nuclear membranes of many other cell types studied by these techniques. An inner honeycombed layer apparently unique to Amoeba proteus is also described.


1961 ◽  
Vol 9 (3) ◽  
pp. 609-617 ◽  
Author(s):  
M. Zalokar

Normal and centrifuged hyphae of Neurospora were studied with the electron microscope. The following cell structures could be identified: nuclei with nucleoli, mitochondria, endoplasmic reticulum, ribosomes, glycogen, fat bodies, vacuoles, and vesicles with an inner canalicular system, of unknown nature. In centrifuged hyphae, the glycogen layer appeared as a light area, with a slight indication of granular structure. The ribosome layer consisted of densely packed ribosomes without any membranes. The mitochondrial layer contained spaces filled with ribosomes. The nuclei were loosely packed, with endoplasmic reticulum between them. The "enchylema" layer was composed of vesicles belonging to the endoplasmic reticulum. The vacuolar layer was poorly preserved and consisted of double-walled vesicles. Fat appeared as stellate osmiophilic droplets. These observations were compared with previous observations under the optical microscope and their meaning for cell physiology was discussed.


Development ◽  
1984 ◽  
Vol 80 (1) ◽  
pp. 321-330
Author(s):  
Jonathan M. W. Slack

The development of ectoderm isolated from the animal pole of axolotl gastrulae is monitored by light microscopy, electron microscopy and analysis of newly synthesized proteins, glycoproteins and glycolipids. When control embryos are undergoing neurulation it is shown that the explants autonomously begin to express epidermal markers and do not express mesodermal markers. However the results suggest that not all the cells become epidermal and electron microscope examination shows that only the outer layer does so, the inner cells remaining undifferentiated.


1957 ◽  
Vol 3 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Alan R. Muir

Prenatal and postnatal cardiac muscle from rabbits has been studied by electron microscopy, after osmium fixation and methacrylate embedding. The observations showed that 1. Cell membranes divide the muscle into cellular units from the youngest embryo which was studied (9½ days after coitus) until the adult state. 2. The embryonic muscle cells contain only one nucleus, whereas the adult cell may be multinucleated. 3. At all stages of development, wherever a myofibrillar axis crosses a cellular boundary, the myofilaments are interrupted by an intercalated disc. 4. With age, increase in size and complexity of the discs render them recognisable by the light microscope.


Sign in / Sign up

Export Citation Format

Share Document