scholarly journals Interactions and regulation of molecular motors in Xenopus melanophores

2002 ◽  
Vol 156 (5) ◽  
pp. 855-865 ◽  
Author(s):  
Steven P. Gross ◽  
M. Carolina Tuma ◽  
Sean W. Deacon ◽  
Anna S. Serpinskaya ◽  
Amy R. Reilein ◽  
...  

Many cellular components are transported using a combination of the actin- and microtubule-based transport systems. However, how these two systems work together to allow well-regulated transport is not clearly understood. We investigate this question in the Xenopus melanophore model system, where three motors, kinesin II, cytoplasmic dynein, and myosin V, drive aggregation or dispersion of pigment organelles called melanosomes. During dispersion, myosin V functions as a “molecular ratchet” to increase outward transport by selectively terminating dynein-driven minus end runs. We show that there is a continual tug-of-war between the actin and microtubule transport systems, but the microtubule motors kinesin II and dynein are likely coordinated. Finally, we find that the transition from dispersion to aggregation increases dynein-mediated motion, decreases myosin V–mediated motion, and does not change kinesin II–dependent motion. Down-regulation of myosin V contributes to aggregation by impairing its ability to effectively compete with movement along microtubules.

2003 ◽  
Vol 160 (3) ◽  
pp. 297-301 ◽  
Author(s):  
Sean W. Deacon ◽  
Anna S. Serpinskaya ◽  
Patricia S. Vaughan ◽  
Monica Lopez Fanarraga ◽  
Isabelle Vernos ◽  
...  

Kinesin II is a heterotrimeric plus end–directed microtubule motor responsible for the anterograde movement of organelles in various cell types. Despite substantial literature concerning the types of organelles that kinesin II transports, the question of how this motor associates with cargo organelles remains unanswered. To address this question, we have used Xenopus laevis melanophores as a model system. Through analysis of kinesin II–mediated melanosome motility, we have determined that the dynactin complex, known as an anchor for cytoplasmic dynein, also links kinesin II to organelles. Biochemical data demonstrates that the putative cargo-binding subunit of Xenopus kinesin II, Xenopus kinesin II–associated protein (XKAP), binds directly to the p150Glued subunit of dynactin. This interaction occurs through aa 530–793 of XKAP and aa 600–811 of p150Glued. These results reveal that dynactin is required for transport activity of microtubule motors of opposite polarity, cytoplasmic dynein and kinesin II, and may provide a new mechanism to coordinate their activities.


2019 ◽  
Author(s):  
Brigette Y. Monroy ◽  
Tracy C. Tan ◽  
Janah May Oclaman ◽  
Jisoo S. Han ◽  
Sergi Simo ◽  
...  

ABSTRACTMany eukaryotic cells distribute their intracellular components through asymmetrically regulated active transport driven by molecular motors along microtubule tracks. While intrinsic and extrinsic regulation of motor activity exists, what governs the overall distribution of activated motor-cargo complexes within cells remains unclear. Here, we utilize in vitro reconstitution of purified motor proteins and non-enzymatic microtubule-associated proteins (MAPs) to demonstrate that these MAPs exhibit distinct influences on the motility of the three main classes of transport motors: kinesin-1, kinesin-3, and cytoplasmic dynein. Further, we dissect how combinations of MAPs affect motors, and reveal how transient interactions between MAPs and motors may promote these effects. From these data, we propose a general “MAP code” that has the capacity to strongly bias directed movement along microtubules and helps elucidate the intricate intracellular sorting observed in highly polarized cells such as neurons.


Author(s):  
Richard B. Vallee

Microtubules are involved in a number of forms of intracellular motility, including mitosis and bidirectional organelle transport. Purified microtubules from brain and other sources contain tubulin and a diversity of microtubule associated proteins (MAPs). Some of the high molecular weight MAPs - MAP 1A, 1B, 2A, and 2B - are long, fibrous molecules that serve as structural components of the cytamatrix. Three MAPs have recently been identified that show microtubule activated ATPase activity and produce force in association with microtubules. These proteins - kinesin, cytoplasmic dynein, and dynamin - are referred to as cytoplasmic motors. The latter two will be the subject of this talk.Cytoplasmic dynein was first identified as one of the high molecular weight brain MAPs, MAP 1C. It was determined to be structurally equivalent to ciliary and flagellar dynein, and to produce force toward the minus ends of microtubules, opposite to kinesin.


2007 ◽  
Vol 47 (supplement) ◽  
pp. S145
Author(s):  
Jun Kozuka ◽  
Yoshiharu Ishii ◽  
Toshio Yanagida

2014 ◽  
Vol 205 (3) ◽  
pp. 357-375 ◽  
Author(s):  
Ning Wang ◽  
Libera Lo Presti ◽  
Yi-Hua Zhu ◽  
Minhee Kang ◽  
Zhengrong Wu ◽  
...  

The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51’s localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8+ cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.


2020 ◽  
Author(s):  
Gina A. Monzon ◽  
Lara Scharrel ◽  
Ashwin DSouza ◽  
Ludger Santen ◽  
Stefan Diez

ABSTRACTThe maintenance of intracellular processes like organelle transport and cell division depend on bidirectional movement along microtubules. These processes typically require kinesin and dynein motor proteins which move with opposite directionality. Because both types of motors are often simultaneously bound to the cargo, regulatory mechanisms are required to ensure controlled directional transport. Recently, it has been shown that parameters like mechanical motor activation, ATP concentration and roadblocks on the microtubule surface differentially influence the activity of kinesin and dynein motors in distinct manners. However, how these parameters affect bidirectional transport systems has not been studied. Here, we investigate the regulatory influence of these three parameter using in vitro gliding motility assays and stochastic simulations. We find that the number of active kinesin and dynein motors determines the transport direction and velocity, but that variations in ATP concentration and roadblock density have no significant effect. Thus, factors influencing the force balance between opposite motors appear to be important, whereas the detailed stepping kinetics and bypassing capabilities of the motors have only little effect.


2014 ◽  
Vol 6 (5) ◽  
pp. 747-760
Author(s):  
V. P. Trifonenkov ◽  
A. V. Kargovsky

1999 ◽  
Vol 144 (3) ◽  
pp. 473-481 ◽  
Author(s):  
Gregory J. Pazour ◽  
Bethany L. Dickert ◽  
George B. Witman

Dyneins are microtubule-based molecular motors involved in many different types of cell movement. Most dynein heavy chains (DHCs) clearly group into cytoplasmic or axonemal isoforms. However, DHC1b has been enigmatic. To learn more about this isoform, we isolated Chlamydomonas cDNA clones encoding a portion of DHC1b, and used these clones to identify a Chlamydomonas cell line with a deletion mutation in DHC1b. The mutant grows normally and appears to have a normal Golgi apparatus, but has very short flagella. The deletion also results in a massive redistribution of raft subunits from a peri-basal body pool (Cole, D.G., D.R. Diener, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum. 1998. J. Cell Biol. 141:993–1008) to the flagella. Rafts are particles that normally move up and down the flagella in a process known as intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519–5523), which is essential for assembly and maintenance of flagella. The redistribution of raft subunits apparently occurs due to a defect in the retrograde component of IFT, suggesting that DHC1b is the motor for retrograde IFT. Consistent with this, Western blots indicate that DHC1b is present in the flagellum, predominantly in the detergent- and ATP-soluble fractions. These results indicate that DHC1b is a cytoplasmic dynein essential for flagellar assembly, probably because it is the motor for retrograde IFT.


1998 ◽  
Vol 111 (3) ◽  
pp. 295-301 ◽  
Author(s):  
A. Huyett ◽  
J. Kahana ◽  
P. Silver ◽  
X. Zeng ◽  
W.S. Saunders

Microtubules provide the substrate for intracellular trafficking by association with molecular motors of the kinesin and dynein superfamilies. Motor proteins are generally thought to function as force generating units for transport of various cargoes along the microtubule polymer. Recent work suggests additional roles for motor proteins in changing the structure of the microtubule network itself. We report here that in the budding yeast Saccharomyces cerevisiae microtubule motors have antagonistic effects on microtubule numbers and lengths. As shown previously, loss of the Kar3p motor stimulates cytoplasmic microtubule growth while loss of Kip2p leads to a sharp reduction in cytoplasmic microtubule numbers. Loss of both the Kip2p and Kar3p motors together in the same cell produces an intermediate phenotype, suggesting that these two motors act in opposition to control cytoplasmic microtubule density. A Kip2p-GFP fusion from single gene expression is most concentrated at the spindle poles, as shown previously for an epitope tagged Kar3p-HA, suggesting both of these motors act from the minus ends of the microtubules to influence microtubule numbers.


2018 ◽  
Vol 45 (2) ◽  
pp. 132 ◽  
Author(s):  
Vilma Kisnieriene ◽  
Indre Lapeikaite ◽  
Vilmantas Pupkis

The Nitellopsis obtusa (N.A.Desvaux) J.Groves cell provides a model system for complex investigation of instantaneous effects of various biologically active compounds (BC) on the generation of plant bioelectrical signals in vivo. Experimental evidence using multiple electrical signals as biomarkers of the effects of BC (acetylcholine, asparagine, glutamate, nicotine, aluminium, nickel and cadmium ions) is provided. The effect of BC on membrane transport systems involved in the cell excitability were tested by current clamp, voltage clamp and patch clamp methods. Membrane potential (MP) alterations and action potential (AP) patterns in response to BC were shown to represent the cell state. High discretisation frequency allows precise, high time resolution analysis of real-time processes measuring changes in excitation threshold, AP amplitude and velocity of repolarisation values after application of BC indicating the effect on ion channels involved in AP generation. Application of voltage clamp revealed that changes in AP peak value were caused not only by increment in averaged maximum amplitude of the Cl– current, but in prolonged Cl– channels’ opening time also. The cytoplasmic droplet can serve as a model system in which the effects of BC on single tonoplast ion channel can be studied by patch clamping. Investigation of electrical cell-to-cell communication revealed evidence on the electrical signal transduction through plasmodesmata.


Sign in / Sign up

Export Citation Format

Share Document