scholarly journals Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function

2004 ◽  
Vol 166 (3) ◽  
pp. 317-323 ◽  
Author(s):  
Rebecca L. Berdeaux ◽  
Begoña Díaz ◽  
Lomi Kim ◽  
G. Steven Martin

Transformation of fibroblasts by oncogenic Src causes disruption of actin stress fibers and formation of invasive adhesions called podosomes. Because the small GTPase Rho stimulates stress fiber formation, Rho inactivation by Src has been thought to be necessary for stress fiber disruption. However, we show here that Rho[GTP] levels do not decrease after transformation by activated Src. Inactivation of Rho in Src-transformed fibroblasts by dominant negative RhoA or the Rho-specific inhibitor C3 exoenzyme disrupted podosome structure as judged by localization of podosome components F-actin, cortactin, and Fish. Inhibition of Rho strongly inhibited Src-induced proteolytic degradation of the extracellular matrix. Furthermore, development of an in situ Rho[GTP] affinity assay allowed us to detect endogenous Rho[GTP] at podosomes, where it colocalized with F-actin, cortactin, and Fish. Therefore, Rho is not globally inactivated in Src-transformed fibroblasts, but is necessary for the assembly and function of structures implicated in tumor cell invasion.

2003 ◽  
Vol 23 (5) ◽  
pp. 1786-1797 ◽  
Author(s):  
Richard A. J. Janssen ◽  
Phillia N. Kim ◽  
James W. Mier ◽  
Deborah K. Morrison

ABSTRACT The down-regulation of the high-molecular-weight isoforms of tropomyosin (TM) is considered to be an essential event in cellular transformation. In ras-transformed fibroblasts, the suppression of TM is dependent on the activity of the Raf-1 kinase; however, the requirement for other downstream effectors of Ras, such as MEK and ERK, is less clear. In this study, we have utilized the mitogen-activated protein kinase scaffolding protein Kinase Suppressor of Ras (KSR) to further investigate the regulation of TM and to clarify the importance of MEK/ERK signaling in this process. Here, we report that overexpression of wild-type KSR1 in ras-transformed fibroblasts restores TM expression and induces cell flattening and stress fiber formation. Moreover, we find that the transcriptional activity of a TM-α promoter is decreased in ras-transformed cells and that the restoration of TM by KSR1 coincides with increased transcription from this promoter. Although ERK activity was suppressed in cells overexpressing KSR1, ERK inhibition alone was insufficient to upregulate TM expression. The KSR1-mediated effects on stress fiber formation and TM transcription required the activity of the ROCK kinase, because these effects could be suppressed by the ROCK inhibitor, Y27632. Overexpression of KSR1 did not directly regulate ROCK activity, but did permit the recoupling of ROCK to the actin polymerization machinery. Finally, all of the KSR1-induced effects were mediated by the C-terminal domain of KSR1 and were dependent on the KSR-MEK interaction.


2000 ◽  
Vol 20 (10) ◽  
pp. 3685-3694 ◽  
Author(s):  
Rita L. Boshans ◽  
Stacey Szanto ◽  
Linda van Aelst ◽  
Crislyn D'Souza-Schorey

ABSTRACT In this study, we have documented an essential role for ADP-ribosylation factor 6 (ARF6) in cell surface remodeling in response to physiological stimulus and in the down regulation of stress fiber formation. We demonstrate that the G-protein-coupled receptor agonist bombesin triggers the redistribution of ARF6- and Rac1-containing endosomal vesicles to the cell surface. This membrane redistribution was accompanied by cortical actin rearrangements and was inhibited by dominant negative ARF6, implying that bombesin is a physiological trigger of ARF6 activation. Furthermore, these studies provide a new model for bombesin-induced Rac1 activation that involves ARF6-regulated endosomal recycling. The bombesin-elicited translocation of vesicular ARF6 was mimicked by activated Gαq and was partially inhibited by expression of RGS2, which down regulates Gq function. This suggests that Gq functions as an upstream regulator of ARF6 activation. The ARF6-induced peripheral cytoskeletal rearrangements were accompanied by a depletion of stress fibers. Moreover, cells expressing activated ARF6 resisted the formation of stress fibers induced by lysophosphatidic acid. We show that the ARF6-dependent inhibition of stress fiber formation was due to an inhibition of RhoA activation and was overcome by expression of a constitutively active RhoA mutant. The latter observations demonstrate that activation of ARF6 down regulates Rho signaling. Our findings underscore the potential roles of ARF6, Rac1, and RhoA in the coordinated regulation of cytoskeletal remodeling.


2006 ◽  
Vol 290 (3) ◽  
pp. L540-L548 ◽  
Author(s):  
Anna A. Birukova ◽  
Djanybek Adyshev ◽  
Boris Gorshkov ◽  
Gary M. Bokoch ◽  
Konstantin G. Birukov ◽  
...  

Endothelial cell (EC) permeability is precisely controlled by cytoskeletal elements [actin filaments, microtubules (MT), intermediate filaments] and cell contact protein complexes (focal adhesions, adherens junctions, tight junctions). We have recently shown that the edemagenic agonist thrombin caused partial MT disassembly, which was linked to activation of small GTPase Rho, Rho-mediated actin remodeling, cell contraction, and dysfunction of lung EC barrier. GEF-H1 is an MT-associated Rho-specific guanosine nucleotide (GDP/GTP) exchange factor, which in MT-unbound state stimulates Rho activity. In this study we tested hypothesis that GEF-H1 may be a key molecule involved in Rho activation, myosin light chain phosphorylation, actin remodeling, and EC barrier dysfunction associated with partial MT disassembly. Our results show that depletion of GEF-H1 or expression of dominant negative GEF-H1 mutant significantly attenuated permeability increase, actin stress fiber formation, and increased MLC and MYPT1 phosphorylation induced by thrombin or MT-depolymerizing agent nocodazole. In contrast, expression of wild-type or activated GEF-H1 mutants dramatically enhanced thrombin and nocodazole effects on stress fiber formation and cell retraction. These results show a critical role for the GEF-H1 in the Rho activation caused by MT disassembly and suggest GEF-H1 as a key molecule involved in cross talk between MT and actin cytoskeleton in agonist-induced Rho-dependent EC barrier regulation.


2000 ◽  
Vol 11 (8) ◽  
pp. 2565-2575 ◽  
Author(s):  
Atsuko Kodama ◽  
Takashi Matozaki ◽  
Atsunori Fukuhara ◽  
Mitsuhiro Kikyo ◽  
Masamitsu Ichihashi ◽  
...  

Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering through the tyrosine kinase–type HGF/SF receptor c-Met. We have previously shown that Rho small G protein (Rho) is involved in the HGF/SF-induced scattering of Madin-Darby canine kidney (MDCK) cells by regulating at least the assembly and disassembly of stress fibers and focal adhesions, but it remains unknown how c-Met regulates Rho activity. We have found here a novel signaling pathway of c-Met consisting of SHP-2-Rho that regulates the assembly and disassembly of stress fibers and focal adhesions in MDCK cells. SHP-2 is a protein-tyrosine phosphatase that contains src homology-2 domains. Expression of a dominant negative mutant of SHP-2 (SHP-2-C/S) markedly increased the formation of stress fibers and focal adhesions in MDCK cells and inhibited their scattering. C3, a Clostridium botulinum ADP-ribosyltransferase, and Y-27632, a specific inhibitor for ROCK, reversed the stimulatory effect of SHP-2-C/S on stress fiber formation and the inhibitory effect on cell scattering. Vav2 is a GDP/GTP exchange protein for Rho. Expression of a dominant negative mutant of Vav2 blocked the stimulatory effect of SHP-2-C/S on stress fiber formation. Conversely, expression of mutants of Vav2 that increased stress fiber formation inhibited HGF/SF-induced cell scattering. These results indicate that SHP-2 physiologically modulates the activity of Rho to form stress fibers and focal adhesions and thereby regulates HGF/SF-induced cell scattering. In addition, Vav2 may be involved in the SHP-2-Rho pathway.


1997 ◽  
Vol 110 (19) ◽  
pp. 2417-2427 ◽  
Author(s):  
O. Kranenburg ◽  
M. Poland ◽  
M. Gebbink ◽  
L. Oomen ◽  
W.H. Moolenaar

Addition of lysophosphatidic acid (LPA) to serum-deprived N1E-115 neuronal cells results in rapid f-actin assembly accompanied by neurite retraction and rounding of the cell body due to contraction of the cortical actin cytoskeleton. LPA action is mimicked by activated RhoA, while it is blocked by dominant-negative RhoA (N19RhoA) and the Rho-inactivating C3 toxin. Using immunofluorescence analysis and high speed centrifugation we show that activated RhoA is localized to the plasma membrane. Wild-type RhoA and N19RhoA, however, are mainly cytosolic. We find that LPA-induced shape changes are preceded by translocation of RhoA from the cytosol to the cell periphery. LPA also stimulates translocation of inactive N19RhoA in the absence of ensuing shape changes. When membrane localization of RhoA is prevented by lovastatin, an inhibitor of protein isoprenylation, or by CAAX motif mutation, cytoskeletal contraction is blocked. However, the assembly of f-actin into stress fibers is not affected under these conditions. The effects of both LPA and activated RhoA are blocked by tyrosine kinase inhibitors (herbimycin, genistein, tyrphostin), but not by dominant-negative Src. We conclude that: (1) LPA-induced cytoskeletal contraction, but not stress fiber formation, requires translocation of RhoA from the cytosol to the plasma membrane; (2) translocation of RhoA occurs independently of its activation; and (3), a non-Src tyrosine kinase is involved in RhoA-stimulated contractility.


2007 ◽  
Vol 361-363 ◽  
pp. 1055-1058 ◽  
Author(s):  
Miho Nakamura ◽  
Akiko Nagai ◽  
Natalie Ohashi ◽  
Yumi Tanaka ◽  
Yasutaka Sekijima ◽  
...  

The osteoblast adhesion to the substrates are recognized to play a fundamental role in osteoconduction process. The purpose of this study was to evaluate the in vitro behavior of osteoblasts cultured on polarized hydroxyapatite (HA), having the enhanced osteobonding abilities. Osteoblast-like cells were seeded onto the polarized HA and investigated the adhesion and motility. The polarization had no effects on the percentage of the number of the spreaded cells against all the adhered cells, but had significant effects on the elongation of adhered cells from fluorescent observation and on the cell motility showed by the wound healing assay. The charges induced on the HA surface accelerated the cytoskeleton reorganization of the adhered cells cultured on HA specimens. The acceleration was emerged as the cells shape, actin filament pattern such as stress fiber formation, and the prolongation of the cell movement distances.


2002 ◽  
Vol 157 (5) ◽  
pp. 819-830 ◽  
Author(s):  
Takahiro Tsuji ◽  
Toshimasa Ishizaki ◽  
Muneo Okamoto ◽  
Chiharu Higashida ◽  
Kazuhiro Kimura ◽  
...  

The small GTPase Rho acts on two effectors, ROCK and mDia1, and induces stress fibers and focal adhesions. However, how ROCK and mDia1 individually regulate signals and dynamics of these structures remains unknown. We stimulated serum-starved Swiss 3T3 fibroblasts with LPA and compared the effects of C3 exoenzyme, a Rho inhibitor, with those of Y-27632, a ROCK inhibitor. Y-27632 treatment suppressed LPA-induced formation of stress fibers and focal adhesions as did C3 exoenzyme but induced membrane ruffles and focal complexes, which were absent in the C3 exoenzyme-treated cells. This phenotype was suppressed by expression of N17Rac. Consistently, the amount of GTP-Rac increased significantly by Y-27632 in LPA-stimulated cells. Biochemically, Y-27632 suppressed tyrosine phosphorylation of paxillin and focal adhesion kinase and not that of Cas. Inhibition of Cas phosphorylation with PP1 or expression of a dominant negative Cas mutant inhibited Y-27632–induced membrane ruffle formation. Moreover, Crk-II mutants lacking in binding to either phosphorylated Cas or DOCK180 suppressed the Y-27632–induced membrane ruffle formation. Finally, expression of a dominant negative mDia1 mutant also inhibited the membrane ruffle formation by Y-27632. Thus, these results have revealed the Rho-dependent Rac activation signaling that is mediated by mDia1 through Cas phosphorylation and antagonized by the action of ROCK.


1998 ◽  
Vol 142 (5) ◽  
pp. 1357-1369 ◽  
Author(s):  
Kairbaan M. Hodivala-Dilke ◽  
C. Michael DiPersio ◽  
Jordan A. Kreidberg ◽  
Richard O. Hynes

Previously we found that α3β1 integrin–deficient neonatal mice develop micro-blisters at the epidermal–dermal junction. These micro-blisters were associated with poor basement membrane organization. In the present study we have investigated the effect of α3β1-deficiency on other keratinocyte integrins, actin-associated proteins and F-actin organization. We show that the absence of α3β1 results in an increase in stress fiber formation in keratinocytes grown in culture and at the basal face of the basal keratinocytes of α3-null epidermis. Moreover, we see a higher concentration of actin-associated proteins such as vinculin, talin, and α-actinin at focal contact sites in the α3-deficient keratinocytes. These changes in focal contact composition were not due to a change in steady-state levels of these proteins, but rather to reorganization due to α3β1 deficiency. Apart from the loss of α3β1 there is no change in expression of the other integrins expressed by the α3-null keratinocytes. However, in functional assays, α3β1 deficiency allows an increase in fibronectin and collagen type IV receptor activities. Thus, our findings provide evidence for a role of α3β1 in regulating stress fiber formation and as a trans-dominant inhibitor of the functions of the other integrins in mouse keratinocytes. These results have potential implications for the regulation of keratinocyte adhesion and migration during wound healing.


2011 ◽  
Vol 301 (5) ◽  
pp. L656-L666 ◽  
Author(s):  
Nathan Sandbo ◽  
Andrew Lau ◽  
Jacob Kach ◽  
Caitlyn Ngam ◽  
Douglas Yau ◽  
...  

Myofibroblast differentiation induced by transforming growth factor-β (TGF-β) and characterized by de novo expression of smooth muscle (SM)-specific proteins is a key process in wound healing and in the pathogenesis of fibrosis. We have previously shown that TGF-β-induced expression and activation of serum response factor (SRF) is required for this process. In this study, we examined the signaling mechanism for SRF activation by TGF-β as it relates to pulmonary myofibroblast differentiation. TGF-β stimulated a profound, but delayed (18–24 h), activation of Rho kinase and formation of actin stress fibers, which paralleled SM α-actin expression. The translational inhibitor cycloheximide blocked these processes without affecting Smad-dependent gene transcription. Inhibition of Rho kinase by Y-27632 or depolymerization of actin by latrunculin B resulted in inhibition TGF-β-induced SRF activation and SM α-actin expression, having no effect on Smad signaling. Conversely, stabilization of actin stress fibers by jasplakinolide was sufficient to drive these processes in the absence of TGF-β. TGF-β promoted a delayed nuclear accumulation of the SRF coactivator megakaryoblastic leukemia-1 (MKL1)/myocardin-related transcription factor-A, which was inhibited by latrunculin B. Furthermore, TGF-β also induced MKL1 expression, which was inhibited by latrunculin B, by SRF inhibitor CCG-1423, or by SRF knockdown. Together, these data suggest a triphasic model for myofibroblast differentiation in response to TGF-β that involves 1) initial Smad-dependent expression of intermediate signaling molecules driving Rho activation and stress fiber formation, 2) nuclear accumulation of MKL1 and activation of SRF as a result of actin polymerization, and 3) SRF-dependent expression of MKL1, driving further myofibroblast differentiation.


Sign in / Sign up

Export Citation Format

Share Document