scholarly journals Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model

2005 ◽  
Vol 168 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Gabriella Dobrowolny ◽  
Cristina Giacinti ◽  
Laura Pelosi ◽  
Carmine Nicoletti ◽  
Nadine Winn ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a selective degeneration of motor neurons, atrophy, and paralysis of skeletal muscle. Although a significant proportion of familial ALS results from a toxic gain of function associated with dominant SOD1 mutations, the etiology of the disease and its specific cellular origins have remained difficult to define. Here, we show that muscle-restricted expression of a localized insulin-like growth factor (Igf) -1 isoform maintained muscle integrity and enhanced satellite cell activity in SOD1G93A transgenic mice, inducing calcineurin-mediated regenerative pathways. Muscle-specific expression of local Igf-1 (mIgf-1) isoform also stabilized neuromuscular junctions, reduced inflammation in the spinal cord, and enhanced motor neuronal survival in SOD1G93A mice, delaying the onset and progression of the disease. These studies establish skeletal muscle as a primary target for the dominant action of inherited SOD1 mutation and suggest that muscle fibers provide appropriate factors, such as mIgf-1, for neuron survival.

2021 ◽  
Author(s):  
João D. Pereira ◽  
Daniel M. DuBreuil ◽  
Anna-Claire Devlin ◽  
Aaron Held ◽  
Yechiam Sapir ◽  
...  

AbstractHuman induced pluripotent stem cells (iPSCs) hold promise for modeling diseases in individual human genetic backgrounds and thus for developing precision medicine. Here, we generate sensorimotor organoids containing physiologically functional neuromuscular junctions (NMJs) within a cultured organoid system and apply the model to different subgroups of amyotrophic lateral sclerosis (ALS). Using a range of molecular, genomic, and physiological techniques, we identify and characterize motor neurons and skeletal muscle, along with sensory neurons, astrocytes, microglia, and vasculature. Organoid cultures derived from ALS subject iPSC lines and isogenic lines edited to harbor familial ALS mutations all show impairment at the level of the NMJ, as detected by both contraction and immunocytochemical measurements. The physiological resolution of the human NMJ synapse, combined with the generation of major cellular cohorts exerting autonomous and non-cell autonomous effects in motor and sensory diseases, may prove valuable for more comprehensive disease modeling.


2021 ◽  
Vol 11 (7) ◽  
pp. 671
Author(s):  
Oihane Pikatza-Menoio ◽  
Amaia Elicegui ◽  
Xabier Bengoetxea ◽  
Neia Naldaiz-Gastesi ◽  
Adolfo López de Munain ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1449
Author(s):  
Cyril Quessada ◽  
Alexandra Bouscary ◽  
Frédérique René ◽  
Cristiana Valle ◽  
Alberto Ferri ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons, amyotrophy and skeletal muscle paralysis usually leading to death due to respiratory failure. While generally considered an intrinsic motor neuron disease, data obtained in recent years, including our own, suggest that motor neuron protection is not sufficient to counter the disease. The dismantling of the neuromuscular junction is closely linked to chronic energy deficit found throughout the body. Metabolic (hypermetabolism and dyslipidemia) and mitochondrial alterations described in patients and murine models of ALS are associated with the development and progression of disease pathology and they appear long before motor neurons die. It is clear that these metabolic changes participate in the pathology of the disease. In this review, we summarize these changes seen throughout the course of the disease, and the subsequent impact of glucose–fatty acid oxidation imbalance on disease progression. We also highlight studies that show that correcting this loss of metabolic flexibility should now be considered a major goal for the treatment of ALS.


2019 ◽  
Vol 27 (4) ◽  
pp. 1369-1382 ◽  
Author(s):  
Honglin Tan ◽  
Mina Chen ◽  
Dejiang Pang ◽  
Xiaoqiang Xia ◽  
Chongyangzi Du ◽  
...  

Abstract Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. Improving neuronal survival in ALS remains a significant challenge. Previously, we identified Lanthionine synthetase C-like protein 1 (LanCL1) as a neuronal antioxidant defense gene, the genetic deletion of which causes apoptotic neurodegeneration in the brain. Here, we report in vivo data using the transgenic SOD1G93A mouse model of ALS indicating that CNS-specific expression of LanCL1 transgene extends lifespan, delays disease onset, decelerates symptomatic progression, and improves motor performance of SOD1G93A mice. Conversely, CNS-specific deletion of LanCL1 leads to neurodegenerative phenotypes, including motor neuron loss, neuroinflammation, and oxidative damage. Analysis reveals that LanCL1 is a positive regulator of AKT activity, and LanCL1 overexpression restores the impaired AKT activity in ALS model mice. These findings indicate that LanCL1 regulates neuronal survival through an alternative mechanism, and suggest a new therapeutic target in ALS.


Author(s):  
Valentina Pegoraro ◽  
Antonio Merico ◽  
Corrado Angelini

Amyotrophic lateral sclerosis (ALS) is a rare, progressive, neurodegenerative disorder caused by degeneration of upper and lower motor neurons. The disease process leads from lower motor neuron involvement to progressive muscle atrophy, weakness, fasciculations for the upper motor neuron involvement to spasticity. Muscle atrophy in ALS is caused by a dysregulation in the molecular network controlling fast and slow muscle fibres. Denervation and reinnervation processes in skeletal muscle occur in the course of ALS and are modulated by rehabilitation. MicroRNAs (miRNAs) are small non-coding RNAs that modulate a wide range of biological functions under various pathophysiological conditions. MiRNAs can be secreted by various cell types and they are markedly stable in body fluids. MiR-1, miR-133 a, miR-133b, and miR-206 are called “myomiRs” and are considered markers of myogenesis during muscle regeneration and neuromuscular junction stabilization or sprouting. We observed a positive effect of a standard aerobic exercise rehabilitative protocol conducted for six weeks in 18 ALS patients during hospitalization in our center. We correlated clinical scales with molecular data on myomiRs. After six weeks of moderate aerobic exercise, myomiRNAs were down-regulated, suggesting an active proliferation of satellite cells in muscle and increased neuromuscular junctions. Our data suggest that circulating miRNAs modulate during skeletal muscle recovery in response to physical rehabilitation in ALS.


2018 ◽  
Vol 4 (10) ◽  
pp. eaat5847 ◽  
Author(s):  
Tatsuya Osaki ◽  
Sebastien G. M. Uzel ◽  
Roger D. Kamm

Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease involving loss of motor neurons (MNs) and muscle atrophy, still has no effective treatment, despite much research effort. To provide a platform for testing drug candidates and investigating the pathogenesis of ALS, we developed an ALS-on-a-chip technology (i.e., an ALS motor unit) using three-dimensional skeletal muscle bundles along with induced pluripotent stem cell (iPSC)–derived and light-sensitive channelrhodopsin-2–induced MN spheroids from a patient with sporadic ALS. Each tissue was cultured in a different compartment of a microfluidic device. Axon outgrowth formed neuromuscular junctions on the muscle fiber bundles. Light was used to activate muscle contraction, which was measured on the basis of pillar deflections. Compared to a non-ALS motor unit, the ALS motor unit generated fewer muscle contractions, there was MN degradation, and apoptosis increased in the muscle. Furthermore, the muscle contractions were recovered by single treatments and cotreatment with rapamycin (a mechanistic target of rapamycin inhibitor) and bosutinib (an Src/c-Abl inhibitor). This recovery was associated with up-regulation of autophagy and degradation of TAR DNA binding protein–43 in the MNs. Moreover, administering the drugs via an endothelial cell barrier decreased the expression of P-glycoprotein (an efflux pump that transports bosutinib) in the endothelial cells, indicating that rapamycin and bosutinib cotreatment has considerable potential for ALS treatment. This ALS-on-a-chip and optogenetics technology could help to elucidate the pathogenesis of ALS and to screen for drug candidates.


2016 ◽  
Vol 113 (31) ◽  
pp. E4494-E4503 ◽  
Author(s):  
Douglas M. Anderson ◽  
Jessica Cannavino ◽  
Hui Li ◽  
Kelly M. Anderson ◽  
Benjamin R. Nelson ◽  
...  

Innervation of skeletal muscle by motor neurons occurs through the neuromuscular junction, a cholinergic synapse essential for normal muscle growth and function. Defects in nerve–muscle signaling cause a variety of neuromuscular disorders with features of ataxia, paralysis, skeletal muscle wasting, and degeneration. Here we show that the nuclear zinc finger protein ZFP106 is highly enriched in skeletal muscle and is required for postnatal maintenance of myofiber innervation by motor neurons. Genetic disruption of Zfp106 in mice results in progressive ataxia and hindlimb paralysis associated with motor neuron degeneration, severe muscle wasting, and premature death by 6 mo of age. We show that ZFP106 is an RNA-binding protein that associates with the core splicing factor RNA binding motif protein 39 (RBM39) and localizes to nuclear speckles adjacent to spliceosomes. Upon inhibition of pre-mRNA synthesis, ZFP106 translocates with other splicing factors to the nucleolus. Muscle and spinal cord of Zfp106 knockout mice displayed a gene expression signature of neuromuscular degeneration. Strikingly, altered splicing of the Nogo (Rtn4) gene locus in skeletal muscle of Zfp106 knockout mice resulted in ectopic expression of NOGO-A, the neurite outgrowth factor that inhibits nerve regeneration and destabilizes neuromuscular junctions. These findings reveal a central role for Zfp106 in the maintenance of nerve–muscle signaling, and highlight the involvement of aberrant RNA processing in neuromuscular disease pathogenesis.


2016 ◽  
Vol 113 (11) ◽  
pp. 3060-3065 ◽  
Author(s):  
Eleonora Palma ◽  
Jorge Mauricio Reyes-Ruiz ◽  
Diego Lopergolo ◽  
Cristina Roseti ◽  
Cristina Bertollini ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons that leads to progressive paralysis of skeletal muscle. Studies of ALS have revealed defects in expression of acetylcholine receptors (AChRs) in skeletal muscle that occur even in the absence of motor neuron anomalies. The endocannabinoid palmitoylethanolamide (PEA) modified the clinical conditions in one ALS patient, improving muscle force and respiratory efficacy. By microtransplanting muscle membranes from selected ALS patients into Xenopus oocytes, we show that PEA reduces the desensitization of acetylcholine-evoked currents after repetitive neurotransmitter application (i.e., rundown). The same effect was observed using muscle samples from denervated (non-ALS) control patients. The expression of human recombinant α1β1γδ (γ-AChRs) and α1β1εδ AChRs (ε-AChRs) in Xenopus oocytes revealed that PEA selectively affected the rundown of ACh currents in ε-AChRs. A clear up-regulation of the α1 subunit in muscle from ALS patients compared with that from non-ALS patients was found by quantitative PCR, but no differential expression was found for other subunits. Clinically, ALS patients treated with PEA showed a lower decrease in their forced vital capacity (FVC) over time as compared with untreated ALS patients, suggesting that PEA can enhance pulmonary function in ALS. In the present work, data were collected from a cohort of 76 ALS patients and 17 denervated patients. Our results strengthen the evidence for the role of skeletal muscle in ALS pathogenesis and pave the way for the development of new drugs to hamper the clinical effects of the disease.


Sign in / Sign up

Export Citation Format

Share Document