scholarly journals A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP

2006 ◽  
Vol 172 (4) ◽  
pp. 577-588 ◽  
Author(s):  
Trent P. Munro ◽  
Sunjong Kwon ◽  
Bruce J. Schnapp ◽  
Daniel St Johnston

Zip code–binding protein 1 (ZBP-1) and its Xenopus laevis homologue, Vg1 RNA and endoplasmic reticulum–associated protein (VERA)/Vg1 RNA-binding protein (RBP), bind repeated motifs in the 3′ untranslated regions (UTRs) of localized mRNAs. Although these motifs are required for RNA localization, the necessity of ZBP-1/VERA remains unresolved. We address the role of ZBP-1/VERA through analysis of the Drosophila melanogaster homologue insulin growth factor II mRNA–binding protein (IMP). Using systematic evolution of ligands by exponential enrichment, we identified the IMP-binding element (IBE) UUUAY, a motif that occurs 13 times in the oskar 3′UTR. IMP colocalizes with oskar mRNA at the oocyte posterior, and this depends on the IBEs. Furthermore, mutation of all, or subsets of, the IBEs prevents oskar mRNA translation and anchoring at the posterior. However, oocytes lacking IMP localize and translate oskar mRNA normally, illustrating that one cannot necessarily infer the function of an RBP from mutations in its binding sites. Thus, the translational activation of oskar mRNA must depend on the binding of another factor to the IBEs, and IMP may serve a different purpose, such as masking IBEs in RNAs where they occur by chance. Our findings establish a parallel requirement for IBEs in the regulation of localized maternal mRNAs in D. melanogaster and X. laevis.

2004 ◽  
Vol 24 (10) ◽  
pp. 4448-4464 ◽  
Author(s):  
Thomas V. O. Hansen ◽  
Niels A. Hammer ◽  
Jacob Nielsen ◽  
Mette Madsen ◽  
Charlotte Dalbaeck ◽  
...  

ABSTRACT Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.5). To characterize the physiological role of IMP1, we generated IMP1-deficient mice carrying a gene trap insertion in the Imp1 gene. Imp1−/− mice were on average 40% smaller than wild-type and heterozygous sex-matched littermates. Growth retardation was apparent from E17.5 and remained permanent into adult life. Moreover, Imp1−/− mice exhibited high perinatal mortality, and only 50% were alive 3 days after birth. In contrast to most other organs, intestinal epithelial cells continue to express IMP1 postnatally, and Imp1−/− mice exhibited impaired development of the intestine, with small and misshapen villi and twisted colon crypts. Analysis of target mRNAs and global expression profiling at E12.5 indicated that Igf2 translation was downregulated, whereas the postnatal intestine showed reduced expression of transcripts encoding extracellular matrix components, such as galectin- 1, lumican, tenascin-C, procollagen transcripts, and the Hsp47 procollagen chaperone. Taken together, the results demonstrate that IMP1 is essential for normal growth and development. Moreover, IMP1 may facilitate intestinal morphogenesis via regulation of extracellular matrix formation.


2020 ◽  
Vol 40 (16) ◽  
Author(s):  
Muhua Yang ◽  
Christina Gallo-Ebert ◽  
Michael Hayward ◽  
Weidong Liu ◽  
Virginia McDonough ◽  
...  

ABSTRACT Genome-wide association studies (GWAS) have linked IGF2BP2 single-nucleotide polymorphisms (SNPs) with type 2 diabetes (T2D). Mice overexpressing mIGF2BP2 have elevated cholesterol levels when fed a diet that induces hepatic steatosis. These and other studies suggest an important role for insulin growth factor 2 mRNA binding protein 2 (IGF2BP2) in the initiation and progression of several metabolic disorders. The ATPase binding cassette protein ABCA1 initiates nascent high-density apolipoprotein (HDL) biogenesis by transferring phospholipid and cholesterol to delipidated apolipoprotein AI (ApoAI). Individuals with mutational ablation of ABCA1 have Tangier disease, which is characterized by a complete loss of HDL. MicroRNA 33a and 33b (miR-33a/b) bind to the 3′ untranslated region (UTR) of ABCA1 and repress its posttranscriptional gene expression. Here, we show that IGF2BP2 works together with miR-33a/b in repressing ABCA1 expression. Our data suggest that IGF2BP2 is an accessory protein of the argonaute (AGO2)–miR-33a/b–RISC complex, as it directly binds to miR-33a/b, AGO2, and the 3′ UTR of ABCA1. Finally, we show that mice overexpressing human IGF2BP2 have decreased ABCA1 expression, increased low-density lipoprotein-cholesterol (LDL-C) and cholesterol blood levels, and elevated SREBP-dependent signaling. Our data support the hypothesis that IGF2BP2 has an important role in maintaining lipid homeostasis through its modulation of ABCA1 expression, as its overexpression or loss leads to dyslipidemia.


2013 ◽  
Vol 69 (2) ◽  
pp. e20-e21
Author(s):  
Chia-Yu Chu ◽  
Yi-Shuan Sheen ◽  
Kuanyin K. Lin ◽  
Meng-Chen Hsieh ◽  
Hsien-Ching Chiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document