scholarly journals Chromosome orientation

2007 ◽  
Vol 179 (2) ◽  
pp. 179-181 ◽  
Author(s):  
Duane A. Compton

Precise chromosome segregation during cell division results from the attachment of chromosomes to microtubules emanating from both poles of the spindle apparatus. The molecular machinery involved in establishing and maintaining properly oriented microtubule attachments remains murky. Some clarity is now emerging with the identification of Bod1 (Biorientation Defective 1), a protein that promotes chromosome biorientation by unleashing chromosomes from improperly oriented microtubule attachments.

mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Matthew J. Bush ◽  
Maureen J. Bibb ◽  
Govind Chandra ◽  
Kim C. Findlay ◽  
Mark J. Buttner

ABSTRACTWhiA is a highly unusual transcriptional regulator related to a family of eukaryotic homing endonucleases. WhiA is required for sporulation in the filamentous bacteriumStreptomyces, but WhiA homologues of unknown function are also found throughout the Gram-positive bacteria. To better understand the role of WhiA inStreptomycesdevelopment and its function as a transcription factor, we identified the WhiA regulon through a combination of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray transcriptional profiling, exploiting a new model organism for the genus,Streptomyces venezuelae, which sporulates in liquid culture. The regulon encompasses ~240 transcription units, and WhiA appears to function almost equally as an activator and as a repressor. Bioinformatic analysis of the upstream regions of the complete regulon, combined with DNase I footprinting, identified a short but highly conserved asymmetric sequence, GACAC, associated with the majority of WhiA targets. Construction of a null mutant showed thatwhiAis required for the initiation of sporulation septation and chromosome segregation inS. venezuelae, and several genes encoding key proteins of theStreptomycescell division machinery, such asftsZ,ftsW, andftsK, were found to be directly activated by WhiA during development. Several other genes encoding proteins with important roles in development were also identified as WhiA targets, including the sporulation-specific sigma factor σWhiGand the diguanylate cyclase CdgB. Cell division is tightly coordinated with the orderly arrest of apical growth in the sporogenic cell, andfilP, encoding a key component of the polarisome that directs apical growth, is a direct target for WhiA-mediated repression during sporulation.IMPORTANCESince the initial identification of the genetic loci required forStreptomycesdevelopment, all of thebldandwhidevelopmental master regulators have been cloned and characterized, and significant progress has been made toward understanding the cell biological processes that drive morphogenesis. A major challenge now is to connect the cell biological processes and the developmental master regulators by dissecting the regulatory networks that link the two. Studies of these regulatory networks have been greatly facilitated by the recent introduction ofStreptomyces venezuelaeas a new model system for the genus, a species that sporulates in liquid culture. Taking advantage ofS. venezuelae, we have characterized the regulon of genes directly under the control of one of these master regulators, WhiA. Our results implicate WhiA in the direct regulation of key steps in sporulation, including the cessation of aerial growth, the initiation of cell division, and chromosome segregation.


2004 ◽  
Vol 55 (2) ◽  
pp. 349-367 ◽  
Author(s):  
Gonçalo Real ◽  
Sabine Autret ◽  
Elizabeth J. Harry ◽  
Jeffery Errington ◽  
Adriano O. Henriques

Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1267-1276
Author(s):  
Katayoun Afshar ◽  
Pierre Gönczy ◽  
Stephen DiNardo ◽  
Steven A Wasserman

Abstract A number of fundamental processes comprise the cell division cycle, including spindle formation, chromosome segregation, and cytokinesis. Our current understanding of these processes has benefited from the isolation and analysis of mutants, with the meiotic divisions in the male germline of Drosophila being particularly well suited to the identification of the required genes. We show here that the fumble (fbl) gene is required for cell division in Drosophila. We find that dividing cells in fbl-deficient testes exhibit abnormalities in bipolar spindle organization, chromosome segregation, and contractile ring formation. Cytological analysis of larval neuroblasts from null mutants reveals a reduced mitotic index and the presence of polyploid cells. Molecular analysis demonstrates that fbl encodes three protein isoforms, all of which contain a domain with high similarity to the pantothenate kinases of A. nidulans and mouse. The largest Fumble isoform is dispersed in the cytoplasm during interphase, concentrates around the spindle at metaphase, and localizes to the spindle midbody at telophase. During early embryonic development, the protein localizes to areas of membrane deposition and/or rearrangement, such as the metaphase and cellularization furrows. Given the role of pantothenate kinase in production of Coenzyme A and in phospholipid biosynthesis, this pattern of localization is suggestive of a role for fbl in membrane synthesis. We propose that abnormalities in synthesis and redistribution of membranous structures during the cell division cycle underlie the cell division defects in fbl mutant cells.


1997 ◽  
Vol 139 (6) ◽  
pp. 1361-1371 ◽  
Author(s):  
Isabel Molina ◽  
Sigrid Baars ◽  
Julie A. Brill ◽  
Karen G. Hales ◽  
Margaret T. Fuller ◽  
...  

The tiovivo (tio) gene of Drosophila encodes a kinesin-related protein, KLP38B, that colocalizes with condensed chromatin during cell division. Wild-type function of the tio gene product KLP38B is required for normal chromosome segregation during mitosis. Mitotic cells in tio larval brains displayed circular mitotic figures, increased ploidy, and abnormal anaphase figures. KLP38B mRNA is maternally provided and expressed in cells about to undergo division. We propose that KLP38B, perhaps redundantly with other chromosome-associated microtubule motor proteins, contributes to interactions between chromosome arms and microtubules important for establishing bipolar attachment of chromosomes and assembly of stable bipolar spindles.


2019 ◽  
Vol 20 (24) ◽  
pp. 6182 ◽  
Author(s):  
Delaney Sherwin ◽  
Yanchang Wang

Accurate chromosome segregation during cell division is essential to maintain genome integrity in all eukaryotic cells, and chromosome missegregation leads to aneuploidy and therefore represents a hallmark of many cancers. Accurate segregation requires sister kinetochores to attach to microtubules emanating from opposite spindle poles, known as bipolar attachment or biorientation. Recent studies have uncovered several mechanisms critical to chromosome bipolar attachment. First, a mechanism exists to ensure that the conformation of sister centromeres is biased toward bipolar attachment. Second, the phosphorylation of some kinetochore proteins destabilizes kinetochore attachment to facilitate error correction, but a protein phosphatase reverses this phosphorylation. Moreover, the activity of the spindle assembly checkpoint is regulated by kinases and phosphatases at the kinetochore, and this checkpoint prevents anaphase entry in response to faulty kinetochore attachment. The fine-tuned kinase/phosphatase balance at kinetochores is crucial for faithful chromosome segregation during both mitosis and meiosis. Here, we discuss the function and regulation of protein phosphatases in the establishment of chromosome bipolar attachment with a focus on the model organism budding yeast.


2019 ◽  
Vol 30 (8) ◽  
pp. 992-1007 ◽  
Author(s):  
Zachary T. Swider ◽  
Rachel K. Ng ◽  
Ramya Varadarajan ◽  
Carey J. Fagerstrom ◽  
Nasser M. Rusan

Cell division is critical for development, organ growth, and tissue repair. The later stages of cell division include the formation of the microtubule (MT)-rich central spindle in anaphase, which is required to properly define the cell equator, guide the assembly of the acto-myosin contractile ring and ultimately ensure complete separation and isolation of the two daughter cells via abscission. Much is known about the molecular machinery that forms the central spindle, including proteins needed to generate the antiparallel overlapping interzonal MTs. One critical protein that has garnered great attention is the protein regulator of cytokinesis 1, or Fascetto (Feo) in Drosophila, which forms a homodimer to cross-link interzonal MTs, ensuring proper central spindle formation and cytokinesis. Here, we report on a new direct protein interactor and regulator of Feo we named Feo interacting protein (FIP). Loss of FIP results in a reduction in Feo localization, rapid disassembly of interzonal MTs, and several defects related to cytokinesis failure, including polyploidization of neural stem cells. Simultaneous reduction in Feo and FIP results in very large, tumorlike DNA-filled masses in the brain that contain hundreds of centrosomes. In aggregate, our data show that FIP acts directly on Feo to ensure fully accurate cell division.


PLoS Genetics ◽  
2017 ◽  
Vol 13 (3) ◽  
pp. e1006702 ◽  
Author(s):  
Elisa Galli ◽  
Caroline Midonet ◽  
Evelyne Paly ◽  
François-Xavier Barre

2006 ◽  
Vol 173 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Susan L. Kline ◽  
Iain M. Cheeseman ◽  
Tetsuya Hori ◽  
Tatsuo Fukagawa ◽  
Arshad Desai

During cell division, kinetochores form the primary chromosomal attachment sites for spindle microtubules. We previously identified a network of 10 interacting kinetochore proteins conserved between Caenorhabditis elegans and humans. In this study, we investigate three proteins in the human network (hDsn1Q9H410, hNnf1PMF1, and hNsl1DC31). Using coexpression in bacteria and fractionation of mitotic extracts, we demonstrate that these proteins form a stable complex with the conserved kinetochore component hMis12. Human or chicken cells depleted of Mis12 complex subunits are delayed in mitosis with misaligned chromosomes and defects in chromosome biorientation. Aligned chromosomes exhibited reduced centromere stretch and diminished kinetochore microtubule bundles. Consistent with this, localization of the outer plate constituent Ndc80HEC1 was severely reduced. The checkpoint protein BubR1, the fibrous corona component centromere protein (CENP) E, and the inner kinetochore proteins CENP-A and CENP-H also failed to accumulate to wild-type levels in depleted cells. These results indicate that a four-subunit Mis12 complex plays an essential role in chromosome segregation in vertebrates and contributes to mitotic kinetochore assembly.


2004 ◽  
Vol 15 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Rita Gandhi ◽  
Silvia Bonaccorsi ◽  
Diana Wentworth ◽  
Stephen Doxsey ◽  
Maurizio Gatti ◽  
...  

We have performed a mutational analysis together with RNA interference to determine the role of the kinesin-like protein KLP67A in Drosophila cell division. During both mitosis and male meiosis, Klp67A mutations cause an increase in MT length and disrupt discrete aspects of spindle assembly, as well as cytokinesis. Mutant cells exhibit greatly enlarged metaphase spindle as a result of excessive MT polymerization. The analysis of both living and fixed cells also shows perturbations in centrosome separation, chromosome segregation, and central spindle assembly. These data demonstrate that the MT plus end-directed motor KLP67A is essential for spindle assembly during mitosis and male meiosis and suggest that the regulation of MT plus-end polymerization is a key determinant of spindle architecture throughout cell division.


Sign in / Sign up

Export Citation Format

Share Document