scholarly journals Voltage-gated Nav channel targeting in the heart requires an ankyrin-G–dependent cellular pathway

2008 ◽  
Vol 180 (1) ◽  
pp. 173-186 ◽  
Author(s):  
John S. Lowe ◽  
Oleg Palygin ◽  
Naina Bhasin ◽  
Thomas J. Hund ◽  
Penelope A. Boyden ◽  
...  

Voltage-gated Nav channels are required for normal electrical activity in neurons, skeletal muscle, and cardiomyocytes. In the heart, Nav1.5 is the predominant Nav channel, and Nav1.5-dependent activity regulates rapid upstroke of the cardiac action potential. Nav1.5 activity requires precise localization at specialized cardiomyocyte membrane domains. However, the molecular mechanisms underlying Nav channel trafficking in the heart are unknown. In this paper, we demonstrate that ankyrin-G is required for Nav1.5 targeting in the heart. Cardiomyocytes with reduced ankyrin-G display reduced Nav1.5 expression, abnormal Nav1.5 membrane targeting, and reduced Na+ channel current density. We define the structural requirements on ankyrin-G for Nav1.5 interactions and demonstrate that loss of Nav1.5 targeting is caused by the loss of direct Nav1.5–ankyrin-G interaction. These data are the first report of a cellular pathway required for Nav channel trafficking in the heart and suggest that ankyrin-G is critical for cardiac depolarization and Nav channel organization in multiple excitable tissues.

2008 ◽  
Vol 180 (1) ◽  
pp. 13-15 ◽  
Author(s):  
Vann Bennett ◽  
Jane Healy

Voltage-gated sodium (Nav) channels in cardiomyocytes are localized in specialized membrane domains that optimize their functions in propagating action potentials across cell junctions and in stimulating voltage-gated calcium channels located in T tubules. Mutation of the ankyrin-binding site of Nav1.5, the principal Nav channel in the heart, was previously known to cause cardiac arrhythmia and the retention of Nav1.5 in an intracellular compartment in cardiomyocytes. Conclusive evidence is now provided that direct interaction between Nav1.5 and ankyrin-G is necessary for the expression of Nav1.5 at the cardiomyocyte cell surface.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Paul G DeCaen ◽  
Yuka Takahashi ◽  
Terry A Krulwich ◽  
Masahiro Ito ◽  
David E Clapham

Entry and extrusion of cations are essential processes in living cells. In alkaliphilic prokaryotes, high external pH activates voltage-gated sodium channels (Nav), which allows Na+ to enter and be used as substrate for cation/proton antiporters responsible for cytoplasmic pH homeostasis. Here, we describe a new member of the prokaryotic voltage-gated Na+ channel family (NsvBa; Non-selective voltage-gated, Bacillus alcalophilus) that is nonselective among Na+, Ca2+ and K+ ions. Mutations in NsvBa can convert the nonselective filter into one that discriminates for Na+ or divalent cations. Gain-of-function experiments demonstrate the portability of ion selectivity with filter mutations to other Bacillus Nav channels. Increasing pH and temperature shifts their activation threshold towards their native resting membrane potential. Furthermore, we find drugs that target Bacillus Nav channels also block the growth of the bacteria. This work identifies some of the adaptations to achieve ion discrimination and gating in Bacillus Nav channels.


2017 ◽  
Vol 117 (4) ◽  
pp. 1690-1701 ◽  
Author(s):  
Dario I. Carrasco ◽  
Jacob A. Vincent ◽  
Timothy C. Cope

Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV1.1, predominantly in sensory terminals together with NaV1.6 and for NaV1.7, mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles. NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site involved in transduction or encoding of muscle stretch. We propose that NaVs contribute to multiple steps in sensory signaling by muscle spindles as it does in other types of slowly adapting sensory neurons.


2016 ◽  
Vol 148 (2) ◽  
pp. 133-145 ◽  
Author(s):  
Pascal Gosselin-Badaroudine ◽  
Adrien Moreau ◽  
Louis Simard ◽  
Thierry Cens ◽  
Matthieu Rousset ◽  
...  

Bilaterian voltage-gated Na+ channels (NaV) evolved from voltage-gated Ca2+ channels (CaV). The Drosophila melanogaster Na+ channel 1 (DSC1), which features a D-E-E-A selectivity filter sequence that is intermediate between CaV and NaV channels, is evidence of this evolution. Phylogenetic analysis has classified DSC1 as a Ca2+-permeable Na+ channel belonging to the NaV2 family because of its sequence similarity with NaV channels. This is despite insect NaV2 channels (DSC1 and its orthologue in Blatella germanica, BSC1) being more permeable to Ca2+ than Na+. In this study, we report the cloning and molecular characterization of the honeybee (Apis mellifera) DSC1 orthologue. We reveal several sequence variations caused by alternative splicing, RNA editing, and genomic variations. Using the Xenopus oocyte heterologous expression system and the two-microelectrode voltage-clamp technique, we find that the channel exhibits slow activation and inactivation kinetics, insensitivity to tetrodotoxin, and block by Cd2+ and Zn2+. These characteristics are reminiscent of CaV channels. We also show a strong selectivity for Ca2+ and Ba2+ ions, marginal permeability to Li+, and impermeability to Mg2+ and Na+ ions. Based on current ion channel nomenclature, the D-E-E-A selectivity filter, and the properties we have uncovered, we propose that DSC1 homologues should be classified as CaV4 rather than NaV2. Indeed, channels that contain the D-E-E-A selectivity sequence are likely to feature the same properties as the honeybee’s channel, namely slow activation and inactivation kinetics and strong selectivity for Ca2+ ions.


2012 ◽  
Vol 140 (4) ◽  
pp. 435-454 ◽  
Author(s):  
Chien-Jung Huang ◽  
Laurent Schild ◽  
Edward G. Moczydlowski

Voltage-gated Na+ channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism. In this study, we used selectivity filter mutations (K1237R, K1237A, and K1237H) of the rat muscle NaV1.4 channel that are known to alter ionic selectivity and Ca2+ permeability to test the trapped ion mechanism, which attributes use-dependent enhancement of toxin affinity to electrostatic repulsion between the bound toxin and Ca2+ or Na+ ions trapped inside the channel vestibule in the closed state. Our results indicate that TTX/STX use dependence is not relieved by mutations that enhance Ca2+ permeability, suggesting that ion–toxin repulsion is not the primary factor that determines use dependence. Evidence now favors the idea that TTX/STX use dependence arises from conformational coupling of the voltage sensor domain or domains with residues in the toxin-binding site that are also involved in slow inactivation.


2018 ◽  
Vol 150 (9) ◽  
pp. 1317-1331 ◽  
Author(s):  
Yali Wang ◽  
Elaine Yang ◽  
Marta M. Wells ◽  
Vasyl Bondarenko ◽  
Kellie Woll ◽  
...  

Voltage-gated sodium (NaV) channels are important targets of general anesthetics, including the intravenous anesthetic propofol. Electrophysiology studies on the prokaryotic NaV channel NaChBac have demonstrated that propofol promotes channel activation and accelerates activation-coupled inactivation, but the molecular mechanisms of these effects are unclear. Here, guided by computational docking and molecular dynamics simulations, we predict several propofol-binding sites in NaChBac. We then strategically place small fluorinated probes at these putative binding sites and experimentally quantify the interaction strengths with a fluorinated propofol analogue, 4-fluoropropofol. In vitro and in vivo measurements show that 4-fluoropropofol and propofol have similar effects on NaChBac function and nearly identical anesthetizing effects on tadpole mobility. Using quantitative analysis by 19F-NMR saturation transfer difference spectroscopy, we reveal strong intermolecular cross-relaxation rate constants between 4-fluoropropofol and four different regions of NaChBac, including the activation gate and selectivity filter in the pore, the voltage sensing domain, and the S4–S5 linker. Unlike volatile anesthetics, 4-fluoropropofol does not bind to the extracellular interface of the pore domain. Collectively, our results show that propofol inhibits NaChBac at multiple sites, likely with distinct modes of action. This study provides a molecular basis for understanding the net inhibitory action of propofol on NaV channels.


2017 ◽  
Vol 149 (2) ◽  
pp. 277-293 ◽  
Author(s):  
Haidun Yan ◽  
Chaojian Wang ◽  
Steven O. Marx ◽  
Geoffrey S. Pitt

Increased “persistent” current, caused by delayed inactivation, through voltage-gated Na+ (NaV) channels leads to cardiac arrhythmias or epilepsy. The underlying molecular contributors to these inactivation defects are poorly understood. Here, we show that calmodulin (CaM) binding to multiple sites within NaV channel intracellular C-terminal domains (CTDs) limits persistent Na+ current and accelerates inactivation across the NaV family. Arrhythmia or epilepsy mutations located in NaV1.5 or NaV1.2 channel CTDs, respectively, reduce CaM binding either directly or by interfering with CTD–CTD interchannel interactions. Boosting the availability of CaM, thus shifting its binding equilibrium, restores wild-type (WT)–like inactivation in mutant NaV1.5 and NaV1.2 channels and likewise diminishes the comparatively large persistent Na+ current through WT NaV1.6, whose CTD displays relatively low CaM affinity. In cerebellar Purkinje neurons, in which NaV1.6 promotes a large physiological persistent Na+ current, increased CaM diminishes the persistent Na+ current, suggesting that the endogenous, comparatively weak affinity of NaV1.6 for apoCaM is important for physiological persistent current.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1516
Author(s):  
Daniel Gratz ◽  
Alexander J Winkle ◽  
Seth H Weinberg ◽  
Thomas J Hund

The voltage-gated Na+ channel Nav1.5 is critical for normal cardiac myocyte excitability. Mathematical models have been widely used to study Nav1.5 function and link to a range of cardiac arrhythmias. There is growing appreciation for the importance of incorporating physiological heterogeneity observed even in a healthy population into mathematical models of the cardiac action potential. Here, we apply methods from Bayesian statistics to capture the variability in experimental measurements on human atrial Nav1.5 across experimental protocols and labs. This variability was used to define a physiological distribution for model parameters in a novel model formulation of Nav1.5, which was then incorporated into an existing human atrial action potential model. Model validation was performed by comparing the simulated distribution of action potential upstroke velocity measurements to experimental measurements from several different sources. Going forward, we hope to apply this approach to other major atrial ion channels to create a comprehensive model of the human atrial AP. We anticipate that such a model will be useful for understanding excitability at the population level, including variable drug response and penetrance of variants linked to inherited cardiac arrhythmia syndromes.


Sign in / Sign up

Export Citation Format

Share Document