scholarly journals Induction of cell retraction by the combined actions of Abl–CrkII and Rho–ROCK1 signaling

2008 ◽  
Vol 183 (4) ◽  
pp. 711-723 ◽  
Author(s):  
XiaoDong Huang ◽  
Diana Wu ◽  
Hua Jin ◽  
Dwayne Stupack ◽  
Jean Y.J. Wang

Dynamic modulation of cell adhesion is integral to a wide range of biological processes. The small guanosine triphosphatase (GTPase) Rap1 is an important regulator of cell–cell and cell–matrix adhesions. We show here that induced expression of activated Abl tyrosine kinase reduces Rap1-GTP levels through phosphorylation of Tyr221 of CrkII, which disrupts interaction of CrkII with C3G, a guanine nucleotide exchange factor for Rap1. Abl-dependent down-regulation of Rap1-GTP causes cell rounding and detachment only when the Rho–ROCK1 pathway is also activated, for example, by lysophosphatidic acid (LPA). During ephrin-A1–induced retraction of PC3 prostate cancer cells, we show that endogenous Abl is activated and disrupts the CrkII–C3G complex to reduce Rap1-GTP. Interestingly, ephrin-A1–induced PC3 cell retraction also requires LPA, which stimulates Rho to a much higher level than that is activated by ephrin-A1. Our results establish Rap1 as another downstream target of the Abl–CrkII signaling module and show that Abl–CrkII collaborates with Rho–ROCK1 to stimulate cell retraction.

2014 ◽  
Vol 206 (6) ◽  
pp. 751-762 ◽  
Author(s):  
Kota Saito ◽  
Koh Yamashiro ◽  
Noriko Shimazu ◽  
Tomoya Tanabe ◽  
Kenji Kontani ◽  
...  

Mechanisms for exporting variably sized cargo from the endoplasmic reticulum (ER) using the same machinery remain poorly understood. COPII-coated vesicles, which transport secretory proteins from the ER to the Golgi apparatus, are typically 60–90 nm in diameter. However, collagen, which forms a trimeric structure that is too large to be accommodated by conventional transport vesicles, is also known to be secreted via a COPII-dependent process. In this paper, we show that Sec12, a guanine-nucleotide exchange factor for Sar1 guanosine triphosphatase, is concentrated at ER exit sites and that this concentration of Sec12 is specifically required for the secretion of collagen VII but not other proteins. Furthermore, Sec12 recruitment to ER exit sites is organized by its direct interaction with cTAGE5, a previously characterized collagen cargo receptor component, which functions together with TANGO1 at ER exit sites. These findings suggest that the export of large cargo requires high levels of guanosine triphosphate–bound Sar1 generated by Sec12 localized at ER exit sites.


2003 ◽  
Vol 160 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Metello Innocenti ◽  
Emanuela Frittoli ◽  
Isabella Ponzanelli ◽  
John R. Falck ◽  
Saskia M. Brachmann ◽  
...  

Class I phosphoinositide 3-kinases (PI3Ks) are implicated in many cellular responses controlled by receptor tyrosine kinases (RTKs), including actin cytoskeletal remodeling. Within this pathway, Rac is a key downstream target/effector of PI3K. However, how the signal is routed from PI3K to Rac is unclear. One possible candidate for this function is the Rac-activating complex Eps8–Abi1–Sos-1, which possesses Rac-specific guanine nucleotide exchange factor (GEF) activity. Here, we show that Abi1 (also known as E3b1) recruits PI3K, via p85, into a multimolecular signaling complex that includes Eps8 and Sos-1. The recruitment of p85 to the Eps8–Abi1–Sos-1 complex and phosphatidylinositol 3, 4, 5 phosphate (PIP3), the catalytic product of PI3K, concur to unmask its Rac-GEF activity in vitro. Moreover, they are indispensable for the activation of Rac and Rac-dependent actin remodeling in vivo. On growth factor stimulation, endogenous p85 and Abi1 consistently colocalize into membrane ruffles, and cells lacking p85 fail to support Abi1-dependent Rac activation. Our results define a mechanism whereby propagation of signals, originating from RTKs or Ras and leading to actin reorganization, is controlled by direct physical interaction between PI3K and a Rac-specific GEF complex.


2021 ◽  
Vol 118 (39) ◽  
pp. e2110298118
Author(s):  
Sergio G. Bartual ◽  
Wenfan Wei ◽  
Yao Zhou ◽  
Veronica M. Pravata ◽  
Wenxia Fang ◽  
...  

Aspergillus fumigatus is a human opportunistic pathogen showing emerging resistance against a limited repertoire of antifungal agents available. The GTPase Rho1 has been identified as an important regulator of the cell wall integrity signaling pathway that regulates the composition of the cell wall, a structure that is unique to fungi and serves as a target for antifungal compounds. Rom2, the guanine nucleotide exchange factor to Rho1, contains a C-terminal citron homology (CNH) domain of unknown function that is found in many other eukaryotic genes. Here, we show that the Rom2 CNH domain interacts directly with Rho1 to modulate β-glucan and chitin synthesis. We report the structure of the Rom2 CNH domain, revealing that it adopts a seven-bladed β-propeller fold containing three unusual loops. A model of the Rho1–Rom2 CNH complex suggests that the Rom2 CNH domain interacts with the Rho1 Switch II motif. This work uncovers the role of the Rom2 CNH domain as a scaffold for Rho1 signaling in fungal cell wall biosynthesis.


2005 ◽  
Vol 171 (5) ◽  
pp. 871-881 ◽  
Author(s):  
Irene H.L. Hamelers ◽  
Cristina Olivo ◽  
Alexander E.E. Mertens ◽  
D. Michiel Pegtel ◽  
Rob A. van der Kammen ◽  
...  

The Rho-like guanosine triphosphatase Rac1 regulates various signaling pathways, including integrin-mediated adhesion and migration of cells. However, the mechanisms by which integrins signal toward Rac are poorly understood. We show that the Rac-specific guanine nucleotide exchange factor Tiam1 (T-lymphoma invasion and metastasis 1) is required for the integrin-mediated laminin (LN)-5 deposition, spreading, and migration of keratinocytes. In contrast to wild-type keratinocytes, Tiam1-deficient (Tiam1−/−) keratinocytes are unable to adhere to and spread on a glass substrate because they are unable to deposit their own LN5 substrate. Both Tiam1 and V12Rac1 can rescue the defects of Tiam1−/− keratinocytes, indicating that these deficiencies are caused by impaired Tiam1-mediated Rac activation. Tiam1−/− cells are unable to activate Rac upon α3β1-mediated adhesion to an exogenous LN5 substrate. Moreover, Tiam1 deficiency impairs keratinocyte migration in vitro and reepithelialization of excision wounds in mouse skin. Our studies indicate that Tiam1 is a key molecule in α3β1-mediated activation of Rac, which is essential for proper production and secretion of LN5, a requirement for the spreading and migration of keratinocytes.


2007 ◽  
Vol 179 (7) ◽  
pp. 1375-1384 ◽  
Author(s):  
Zongtian Tong ◽  
Xiang-Dong Gao ◽  
Audrey S. Howell ◽  
Indrani Bose ◽  
Daniel J. Lew ◽  
...  

Cells of the budding yeast Saccharomyces cerevisiae are born carrying localized transmembrane landmark proteins that guide the subsequent establishment of a polarity axis and hence polarized growth to form a bud in the next cell cycle. In haploid cells, the relevant landmark proteins are concentrated at the site of the preceding cell division, to which they recruit Cdc24, the guanine nucleotide exchange factor for the conserved polarity regulator Cdc42. However, instead of polarizing at the division site, the new polarity axis is directed next to but not overlapping that site. Here, we show that the Cdc42 guanosine triphosphatase–activating protein (GAP) Rga1 establishes an exclusion zone at the division site that blocks subsequent polarization within that site. In the absence of localized Rga1 GAP activity, new buds do in fact form within the old division site. Thus, Cdc42 activators and GAPs establish concentric zones of action such that polarization is directed to occur adjacent to but not within the previous cell division site.


2019 ◽  
Author(s):  
Maíra H. Nagai ◽  
Luciana M. Gutiyama ◽  
Victor P. S. Xavier ◽  
Cleiton F. Machado ◽  
Alice H. Reis ◽  
...  

AbstractmTOR, a serine/threonine protein kinase that is involved in a series of critical cellular processes, can be found in two functionally distinct complexes, mTORC1 and mTORC2. In contrast to mTORC1, little is known about the mechanisms that regulate mTORC2. Here we show that mTORC2 activity is reduced in mice with a hypomorphic mutation of the Ric-8B gene. Ric-8B is a highly conserved protein that acts as a non-canonical guanine nucleotide exchange factor (GEF) for heterotrimeric Gαs/olf type subunits. We found that Ric-8B hypomorph embryos are smaller than their wild type littermates, fail to close the neural tube in the cephalic region and die during mid-embryogenesis. Comparative transcriptome analysis revealed that signaling pathways involving GPCRs and G proteins are dysregulated in the Ric-8B mutant embryos. Interestingly, this analysis also revealed an unexpected impairment of the mTOR signaling pathway.Phosphorylation of Akt at Ser 473 is downregulated in the Ric-8B mutant embryos, indicating a decreased activity of mTORC2. In contrast, phosphorylation of S6, a downstream target of mTORC1, is unaltered. Knockdown of the endogenous Ric-8B gene in HEK293T cells leads to reduced phosphorylation levels of Akt at Ser 473, but not of S6, further supporting the selective involvement of Ric-8B in mTORC2 activity. Our results reveal a crucial role for Ric-8B in development and provide novel insights into the signals that regulate mTORC2 activity.Author SummaryGene inactivation in mice can be used to identify genes that are involved in important biological processes and that may contribute to disease. By using this approach, we found that the Ric-8B gene is essential for embryogenesis and for the normal development of the nervous system. Ric-8B mutant mouse embryos are smaller than their wild type littermates and show neural tube defects at the cranial region. This approach also allowed us to identify the biological pathways that are involved in the observed phenotypes, the G protein and mTORC2 signaling pathways. mTORC2 plays particular important roles also in the adult brain, and has been implicated in neurological disorders. Ric-8B is highly conserved in mammals, including humans. Our mutant mice provide a model to study the complex molecular and cellular processes underlying the interplay between Ric-8B and mTORC2 in neuronal function.


2016 ◽  
Vol 216 (1) ◽  
pp. 181-197 ◽  
Author(s):  
Nisha Bte Mohd Rafiq ◽  
Zi Zhao Lieu ◽  
Tingting Jiang ◽  
Cheng-han Yu ◽  
Paul Matsudaira ◽  
...  

Podosomes represent a class of integrin-mediated cell-matrix adhesions formed by migrating and matrix-degrading cells. We demonstrate that in macrophage-like THP1 cells and fibroblasts stimulated to produce podosomes, down-regulation of the G-protein ARF1 or the ARF1 guanine nucleotide exchange factor, ARNO, by small, interfering RNA or pharmacological inhibitors led to striking podosome elimination. Concomitantly, treatments inducing podosome formation increased the level of guanosine triphosphate (GTP)–bound ARF1. ARNO was found to colocalize with the adhesive rings of podosomes, whereas ARF1 was localized to vesicular structures transiently contacting podosome rings. Inhibition of ARF1 led to an increase in RhoA-GTP levels and triggered assembly of myosin-IIA filaments in THP1 cells, whereas the suppression of myosin-IIA rescued podosome formation regardless of ARF1 inhibition. Finally, expression of constitutively active ARF1 in fibroblasts induced formation of putative podosome precursors: actin-rich puncta coinciding with matrix degradation sites and containing proteins of the podosome core but not of the adhesive ring. Thus, ARNO-ARF1 regulates formation of podosomes by inhibition of RhoA/myosin-II and promotion of actin core assembly.


2019 ◽  
Author(s):  
Massimiliano Baldassarre ◽  
Virtu Solano-Collado ◽  
Arda Balci ◽  
Rosa A. Colamarino ◽  
Ivy M Dambuza ◽  
...  

ABSTRACTMacrophages provide a first line of defence against microorganisms, and while some mechanisms to kill pathogens such as the oxidative burst are well described, others are still undefined or unknown. Here we report that the Rab32 GTPase and its guanine nucleotide exchange factor BLOC-3 are central components of a trafficking pathway that controls both bacterial and fungal intracellular pathogens. This broad host-defence mechanism is active in both human and murine macrophages and is independent of well known antimicrobial mechanisms such as the NADPH-dependent oxidative burst, production of nitric oxide and antimicrobial peptides. To survive in human macrophages, Salmonella Typhi actively counteracts the Rab32/BLOC-3 pathway through its Salmonella pathogenicity island-1-encoded type III secretion system. These findings demonstrate that the Rab32/BLOC-3 pathway is a novel and universal host-defence pathway and protects mammalian species from a wide range of intracellular pathogens.


Sign in / Sign up

Export Citation Format

Share Document