scholarly journals Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate

2009 ◽  
Vol 186 (5) ◽  
pp. 665-673 ◽  
Author(s):  
Sonia Stefanovic ◽  
Nesrine Abboud ◽  
Stéphanie Désilets ◽  
David Nury ◽  
Chad Cowan ◽  
...  

Oct4 exerts a dose-dependent dual action, as both a gatekeeper for stem cell pluripotency and in driving cells toward specific lineages. Here, we identify the molecular mechanism underlying this dual function. BMP2- or transgene-induced Oct4 up-regulation drives human embryonic and induced pluripotent stem cells to become cardiac progenitors. When embryonic stem cell pluripotency is achieved, Oct4 switches from the Sox2 to the Sox17 promoter. This switch allows the cells to turn off the pluripotency Oct4-Sox2 loop and to turn on the Sox17 promoter. This powerful process generates a subset of endoderm-expressing Sox17 and Hex, both regulators of paracrine signals for cardiogenesis (i.e., Wnt, BMP2) released into the medium surrounding colonies of embryonic stem cells. Our data thus reveal a novel molecular Oct4- and Sox17-mediated mechanism that disrupts the stem cell microenvironment favoring pluripotency to provide a novel paracrine endodermal environment in which cell lineage is determined and commits the cells to a cardiogenic fate.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jitong Guo ◽  
Baojiang Wu ◽  
Shuyu Li ◽  
Siqin Bao ◽  
Lixia Zhao ◽  
...  

Blastocyst injection and morula aggregation are commonly used to evaluate stem cell pluripotency based on chimeric contribution of the stem cells. To assess the protocols for generating chimeras from stem cells, 8-cell mouse embryos were either injected or cocultured with mouse embryonic stem cells and induced pluripotent stem cells, respectively. Although a significantly higher chimera rate resulted from blastocyst injection, the highest germline contribution resulted from injection of 8-cell embryos with embryonic stem cells. The fully agouti colored chimeras were generated from both injection and coculture of 8-cell embryos with embryonic stem cells. Additionally, microsatellite DNA screening showed that the fully agouti colored chimeras were fully embryonic stem cell derived mice. Unlike embryonic stem cells, the mouse chimeras were only generated from injection of 8-cell embryos with induced pluripotent stem cells and none of these showed germline transmission. The results indicated that injection of 8-cell embryos is the most efficient method for assessing stem cell pluripotency and generating induced pluripotent stem cell chimeras, embryonic stem cell chimeras with germline transmission, and fully mouse embryonic stem cell derived mice.


2011 ◽  
Vol 286 (18) ◽  
pp. 16121-16130 ◽  
Author(s):  
Hironori Kawahara ◽  
Yohei Okada ◽  
Takao Imai ◽  
Akio Iwanami ◽  
Paul S. Mischel ◽  
...  

Musashi1 (Msi1) is an RNA-binding protein that is highly expressed in neural stem/progenitor cells (NS/PCs) as well as in other tissue stem cells. Msi1 binds to the 3′-UTR of its target mRNAs in NS/PCs, prevents their translation, and interferes with NS/PC differentiation. We previously showed that Msi1 competes with eIF4G to bind poly(A)-binding protein and inhibits assembly of the 80 S ribosome. Here we show that Msi1 works in concert with Lin28 to regulate post-transcriptional microRNA (miRNA) biogenesis in the cropping step, which occurs in the nucleus. Lin28 and its binding partner terminal uridylyltransferase 4 (TUT4) are known to maintain embryonic stem cell pluripotency by blocking let-7 miRNA biogenesis at the dicing step. Interestingly, we found that during early neural differentiation of embryonic stem cells, Msi1 enhanced the localization of Lin28 to the nucleus and also inhibited the nuclear cropping step of another let-7 family miRNA, miR98. These results suggest that Msi1 can influence stem cell maintenance and differentiation by controlling the subcellular localization of proteins involved in miRNA biogenesis, as well as by regulating the translation of its target mRNA.


2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


2017 ◽  
Vol 4 (4) ◽  
pp. 533-542 ◽  
Author(s):  
Guangdun Peng ◽  
Patrick P. L. Tam ◽  
Naihe Jing

Abstract Establishment of progenitor cell populations and lineage diversity during embryogenesis and the differentiation of pluripotent stem cells is a fascinating and intricate biological process. Conceptually, an understanding of this developmental process provides a framework to integrate stem-cell pluripotency, cell competence and differentiating potential with the activity of extrinsic and intrinsic molecular determinants. The recent advent of enabling technologies of high-resolution transcriptome analysis at the cellular, population and spatial levels proffers the capability of gaining deeper insights into the attributes of the gene regulatory network and molecular signaling in lineage specification and differentiation. In this review, we provide a snapshot of the emerging enabling genomic technologies that contribute to the study of development and stem-cell biology.


Author(s):  
Fariha Khaliq

Stem cell therapy is an approach to use cells that have the ability of self-renewal and to differentiate into different types of functional cells that are obtained from embryo and other postnatal sources to treat multiple disorders. These cells can be differentiated into different types of stem cells based on their specific characteristics to be totipotent, unipotent, multipotent or pluripotent. As potential therapy, pluripotent stem cells are considered to be the most interesting as they can be differentiated into different type of cells with similar characteristics as embryonic stem cells. Induced pluripotent stem cells (iPSCs) are adult cells that are reprogrammed genetically into stem cells from human fibroblasts through expressing genes and transcription factors at different time intervals. In this review, we will discuss the applications of stem cell therapy using iPSCs technology in treating neurodegenerative disorder such that Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS). We have also broadly highlighted the significance of pluripotent stem cells in stem cell therapy.


2021 ◽  
Vol 26 ◽  
pp. 169-191
Author(s):  
Emma E. Redfield ◽  
Erin K. Luciano ◽  
Monica J. Sewell ◽  
Lucas A. Mitzel ◽  
Isaac J. Sanford ◽  
...  

This study looks at the number of clinical trials involving specific stem cell types. To our knowledge, this has never been done before. Stem cell clinical trials that were conducted at locations in the US and registered on the National Institutes of Health database at ‘clinicaltrials.gov’ were categorized according to the type of stem cell used (adult, cancer, embryonic, perinatal, or induced pluripotent) and the year that the trial was registered. From 1999 to 2014, there were 2,357 US stem cell clinical trials registered on ‘clinicaltrials.gov,’ and 89 percent were from adult stem cells and only 0.12 percent were from embryonic stem cells. This study concludes that embryonic stem cells should no longer be used for clinical study because of their irrelevance, moral questions, and induced pluripotent stem cells.


Author(s):  
Lulu Ji ◽  
Lin Wang

Human placenta is vital for fetal development, and act as an interface between the fetus and the expecting mother. Abnormal placentati on underpins various pregnancy complications such as miscarriage, pre-eclampsia and intrauterine growth restriction. Despite the important role of placenta, the molecular mechanisms governing placental formation and trophoblast cell lineage specification is poorly understand. It is mostly due to the lack of appropriate model system. The great various in placental types across mammals make it limit for the use of laboratory animals in studying human placental development. However, over the past few years, alternative methods have been employed, including human embryonic stem cells, induced pluripotent stem cells, human trophoblast stem cell, and 3-dimensional organoids. Herein, we summarize the present knowledge about human development, differentiated cell types in the trophoblast epithelium and current human placental trophoblast model systems.


2012 ◽  
Vol 17 (5) ◽  
pp. 683-691 ◽  
Author(s):  
Tadahiro Shinozawa ◽  
Hatsue Furukawa ◽  
Eimei Sato ◽  
Kenji Takami

Cardiomyocytes derived from embryonic stem cells (ES-CMs) and induced pluripotent stem cells (iPS-CMs) are useful for toxicity and pharmacology screening. In the present study, we found that cardiomyocyte-rich beating cell clusters (CCs) emerged from murine embryonic stem cell (mESC)–derived beating EBs and from human-induced pluripotent stem cell (hiPSC)–derived beating EBs dissociated by gentle pipetting with a thin glass pipette. The percentage of cardiac troponin T (cTnT)–positive cells in the beating CCs obtained from mESC-derived and hiPSC-derived beating EBs was higher (81.5% and 91.6%, respectively) than in beating-undissociated EBs (13.7% and 67.1%, respectively). For mESCs, the yield of cTnT-positive cells from beating CCs was estimated to be 1.6 times higher than that of beating EBs. The bromodeoxyuridine labeling index of mouse ES-CMs and human iPS-CMs in beating CCs was 1.5- and 3.2-fold, respectively, greater than those in beating EBs. To investigate the utility of the cells in toxicity assessment, we showed that doxorubicin, a cardiotoxic drug, induced myofilament disruption in cardiomyocytes isolated by this method. This simple method enables preparation of mouse ES-CMs and human iPS-CMs with better proliferative activity than beating EBs not dissociated by pipetting, and the cardiomyocytes are useful for drug-induced myocardial toxicity testing.


Sign in / Sign up

Export Citation Format

Share Document