scholarly journals Mammalian BLM helicase is critical for integrating multiple pathways of meiotic recombination

2010 ◽  
Vol 188 (6) ◽  
pp. 779-789 ◽  
Author(s):  
J. Kim Holloway ◽  
Meisha A. Morelli ◽  
Peter L. Borst ◽  
Paula E. Cohen

Bloom’s syndrome (BS) is an autosomal recessive disorder characterized by growth retardation, cancer predisposition, and sterility. BS mutated (Blm), the gene mutated in BS patients, is one of five mammalian RecQ helicases. Although BLM has been shown to promote genome stability by assisting in the repair of DNA structures that arise during homologous recombination in somatic cells, less is known about its role in meiotic recombination primarily because of the embryonic lethality associated with Blm deletion. However, the localization of BLM protein on meiotic chromosomes together with evidence from yeast and other organisms implicates a role for BLM helicase in meiotic recombination events, prompting us to explore the meiotic phenotype of mice bearing a conditional mutant allele of Blm. In this study, we show that BLM deficiency does not affect entry into prophase I but causes severe defects in meiotic progression. This is exemplified by improper pairing and synapsis of homologous chromosomes and altered processing of recombination intermediates, resulting in increased chiasmata. Our data provide the first analysis of BLM function in mammalian meiosis and strongly argue that BLM is involved in proper pairing, synapsis, and segregation of homologous chromosomes; however, it is dispensable for the accumulation of recombination intermediates.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ofer Rog ◽  
Simone Köhler ◽  
Abby F Dernburg

The synaptonemal complex (SC) is a polymer that spans ~100 nm between paired homologous chromosomes during meiosis. Its striated, periodic appearance in electron micrographs led to the idea that transverse filaments within this structure ‘crosslink’ the axes of homologous chromosomes, stabilizing their pairing. SC proteins can also form polycomplexes, three-dimensional lattices that recapitulate the periodic structure of SCs but do not associate with chromosomes. Here we provide evidence that SCs and polycomplexes contain mobile subunits and that their assembly is promoted by weak hydrophobic interactions, indicative of a liquid crystalline phase. We further show that in the absence of recombination intermediates, polycomplexes recapitulate the dynamic localization of pro-crossover factors during meiotic progression, revealing how the SC might act as a conduit to regulate chromosome-wide crossover distribution. Properties unique to liquid crystals likely enable long-range signal transduction along meiotic chromosomes and underlie the rapid evolution of SC proteins.


Genetics ◽  
2020 ◽  
Vol 216 (2) ◽  
pp. 395-408
Author(s):  
Lisa-Marie Kuhl ◽  
Vasso Makrantoni ◽  
Sarah Recknagel ◽  
Animish N. Vaze ◽  
Adele L. Marston ◽  
...  

In meiosis, crossover (CO) formation between homologous chromosomes is essential for faithful segregation. However, misplaced meiotic recombination can have catastrophic consequences on genome stability. Within pericentromeres, COs are associated with meiotic chromosome missegregation. In organisms ranging from yeast to humans, pericentromeric COs are repressed. We previously identified a role for the kinetochore-associated Ctf19 complex (Ctf19c) in pericentromeric CO suppression. Here, we develop a dCas9/CRISPR-based system that allows ectopic targeting of Ctf19c-subunits. Using this approach, we query sufficiency in meiotic CO suppression, and identify Ctf19 as a mediator of kinetochore-associated CO control. The effect of Ctf19 is encoded in its NH2-terminal tail, and depends on residues important for the recruitment of the Scc2-Scc4 cohesin regulator. This work provides insight into kinetochore-derived control of meiotic recombination. We establish an experimental platform to investigate and manipulate meiotic CO control. This platform can easily be adapted in order to investigate other aspects of chromosome biology.


Author(s):  
Lisa-Marie Kuhl ◽  
Vasso Makrantoni ◽  
Sarah Recknagel ◽  
Animish N. Vaze ◽  
Adele L. Marston ◽  
...  

AbstractIn meiosis, crossover formation between homologous chromosomes is essential for faithful segregation. However, improperly controlled or placed meiotic recombination can have catastrophic consequences on genome stability. Specifically, within centromeres and surrounding regions (i.e. pericentromeres), crossovers are associated with chromosome missegregation and developmental aneuploidy. In organisms ranging from yeast to humans, crossovers are repressed within (peri)centromeric regions. We previously identified a key role for the multi-subunit, kinetochore-associated Ctf19 complex (Ctf19c; the budding yeast equivalent of the human CCAN) in regulating pericentromeric crossover formation. Here, we develop a dCas9/CRISPR-based system that allows ectopic targeting of Ctf19c-subunits to a non-centromeric locus during meiosis. Using this approach, we query sufficiency in meiotic crossover suppression, and identify Ctf19 (the budding yeast homologue of vertebrate CENP-P) as a central mediator of kinetochore-associated crossover control. We show that the effect of Ctf19 is encoded in its NH2-terminal tail, and depends on residues known to be important for the recruitment of the Scc2-Scc4 cohesin regulator to kinetochores. We thus reveal a crucial determinant that links kinetochores to meiotic recombinational control. This work provides insight into localized control of meiotic recombination. Furthermore, our approach establishes a dCas9/CRISPR-based experimental platform that can be utilized to investigate and locally manipulate meiotic crossover control. This platform can easily be adapted in order to investigate other aspects of localized chromosome biology.


Author(s):  
Ou Fang ◽  
Lin Wang ◽  
Yuxin Zhang ◽  
Jixuan Yang ◽  
Qin Tao ◽  
...  

Abstract Genetic recombination characterized by reciprocal exchange of genes on paired homologous chromosomes is the most prominent event in meiosis of almost all sexually reproductive organisms. It contributes to genome stability by ensuring the balanced segregation of paired homologs in meiosis, and it is also the major driving factor in generating genetic variation for natural and artificial selection. Meiotic recombination is subjected to the control of a highly stringent and complex regulating process and meiotic recombination frequency (MRF) may be affected by biological and abiotic factors such as sex, gene density, nucleotide content, and chemical/temperature treatments, having motivated tremendous researches for artificially manipulating MRF. Whether genome polyploidization would lead to a significant change in MRF has attracted both historical and recent research interests; however, tackling this fundamental question is methodologically challenging due to the lack of appropriate methods for tetrasomic genetic analysis, thus has led to controversial conclusions in the literature. This article presents a comprehensive and rigorous survey of genome duplication-mediated change in MRF using Saccharomyces cerevisiae as a eukaryotic model. It demonstrates that genome duplication can lead to consistently significant increase in MRF and rate of crossovers across all 16 chromosomes of S. cerevisiae, including both cold and hot spots of MRF. This ploidy-driven change in MRF is associated with weakened recombination interference, enhanced double-strand break density, and loosened chromatin histone occupation. The study illuminates a significant evolutionary feature of genome duplication and opens an opportunity to accelerate response to artificial and natural selection through polyploidization.


2021 ◽  
Author(s):  
Richard Cardoso da Silva ◽  
Gerben Vader

AbstractThe generally conserved AAA+ ATPase Pch2/TRIP13 is involved in diverse aspects of meiosis, such as prophase checkpoint function, DNA break regulation, and meiotic recombination. The controlled recruitment of Pch2 to meiotic chromosomes allows it to use its ATPase activity to influence HORMA protein-dependent signaling. Because of the connection between Pch2 chromosomal recruitment and its functional roles in meiosis, it is important to reveal the molecular details that govern Pch2 localization. Here, we review the current understanding of the different factors that control the recruitment of Pch2 to meiotic chromosomes, with a focus on research performed in budding yeast. During meiosis in this organism, Pch2 is enriched within the nucleolus, where it likely associates with the specialized chromatin of the ribosomal (r)DNA. Pch2 is also found on non-rDNA euchromatin, where its recruitment is contingent on Zip1, a component of the synaptonemal complex (SC) that assembles between homologous chromosomes. We discuss recent findings connecting the recruitment of Pch2 with its association with the Origin Recognition Complex (ORC) and reliance on RNA Polymerase II-dependent transcription. In total, we provide a comprehensive overview of the pathways that control the chromosomal association of an important meiotic regulator.


2008 ◽  
Vol 180 (4) ◽  
pp. 673-679 ◽  
Author(s):  
Fang Yang ◽  
Sigrid Eckardt ◽  
N. Adrian Leu ◽  
K. John McLaughlin ◽  
Peijing Jeremy Wang

During meiosis, homologous chromosomes undergo synapsis and recombination. We identify TEX15 as a novel protein that is required for chromosomal synapsis and meiotic recombination. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15-deficient spermatocytes exhibit a failure in chromosomal synapsis. In mutant spermatocytes, DNA double-strand breaks (DSBs) are formed, but localization of the recombination proteins RAD51 and DMC1 to meiotic chromosomes is severely impaired. Based on these data, we propose that TEX15 regulates the loading of DNA repair proteins onto sites of DSBs and, thus, its absence causes a failure in meiotic recombination.


2018 ◽  
Author(s):  
Jonathan Ribeiro ◽  
Pauline Dupaigne ◽  
Clotilde Duquenne ◽  
Xavier Veaute ◽  
Cynthia Petrillo ◽  
...  

AbstractHomologous recombination is a conserved DNA repair process mandatory for chromosome segregation during meiosis. RPA, a ubiquitous complex essential to recombination, is thought to play a similar role during mitotic and meiotic recombination. MEIOB, a meiosis-specific factor with unknown molecular function, ressembles a RPA subunit. Here we use in vivo approaches to show that in mouse spermatocytes, DMC1 and RAD51 appear to be normally loaded in the absence of MEIOB but are prematurely lost from unrepaired recombination sites. This loss correlates with an accumulation of the BLM helicase on meiotic chromosomes. We also show that MEIOB alters the immunodetection of RPA subunits at meiotic recombination sites. Using electron microscopy and purified proteins, we demonstrate that the MEIOB-SPATA22 complex associates with and modifies the conformation of RPA-coated ssDNA. Finally, we identify structural homology between MEIOB, SPATA22 and RPA subunits, and show that MEIOB and SPATA22 interact through C-terminal OB-fold containing domains (OBCDs) like RPA subunits. Moreover, MEIOB and SPATA22 cooperate to interact with RPA through their OBCDs. Our results suggest that MEIOB, SPATA22 and RPA work together to ensure proper processing of meiotic recombination intermediates.


2013 ◽  
Vol 202 (7) ◽  
pp. 1023-1039 ◽  
Author(s):  
Henning F. Horn ◽  
Dae In Kim ◽  
Graham D. Wright ◽  
Esther Sook Miin Wong ◽  
Colin L. Stewart ◽  
...  

Chromosome pairing is an essential meiotic event that ensures faithful haploidization and recombination of the genome. Pairing of homologous chromosomes is facilitated by telomere-led chromosome movements and formation of a meiotic bouquet, where telomeres cluster to one pole of the nucleus. In metazoans, telomere clustering is dynein and microtubule dependent and requires Sun1, an inner nuclear membrane protein. Here we provide a functional analysis of KASH5, a mammalian dynein-binding protein of the outer nuclear membrane that forms a meiotic complex with Sun1. This protein is related to zebrafish futile cycle (Fue), a nuclear envelope (NE) constituent required for pronuclear migration. Mice deficient in this Fue homologue are infertile. Males display meiotic arrest in which pairing of homologous chromosomes fails. These findings demonstrate that telomere attachment to the NE is insufficient to promote pairing and that telomere attachment sites must be coupled to cytoplasmic dynein and the microtubule system to ensure meiotic progression.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 607-620 ◽  
Author(s):  
Jeremy M Grushcow ◽  
Teresa M Holzen ◽  
Ken J Park ◽  
Ted Weinert ◽  
Michael Lichten ◽  
...  

Abstract Checkpoint gene function prevents meiotic progression when recombination is blocked by mutations in the recA homologue DMC1. Bypass of dmc1 arrest by mutation of the DNA damage checkpoint genes MEC1, RAD17, or RAD24 results in a dramatic loss of spore viability, suggesting that these genes play an important role in monitoring the progression of recombination. We show here that the role of mitotic checkpoint genes in meiosis is not limited to maintaining arrest in abnormal meioses; mec1-1, rad24, and rad17 single mutants have additional meiotic defects. All three mutants display Zip1 polycomplexes in two- to threefold more nuclei than observed in wild-type controls, suggesting that synapsis may be aberrant. Additionally, all three mutants exhibit elevated levels of ectopic recombination in a novel physical assay. rad17 mutants also alter the fraction of recombination events that are accompanied by an exchange of flanking markers. Crossovers are associated with up to 90% of recombination events for one pair of alleles in rad17, as compared with 65% in wild type. Meiotic progression is not required to allow ectopic recombination in rad17 mutants, as it still occurs at elevated levels in ndt80 mutants that arrest in prophase regardless of checkpoint signaling. These observations support the suggestion that MEC1, RAD17, and RAD24, in addition to their proposed monitoring function, act to promote normal meiotic recombination.


Sign in / Sign up

Export Citation Format

Share Document