scholarly journals HP1α recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair

2011 ◽  
Vol 193 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Céline Baldeyron ◽  
Gaston Soria ◽  
Danièle Roche ◽  
Adam J. L. Cook ◽  
Geneviève Almouzni

Heterochromatin protein 1 (HP1), a major component of constitutive heterochromatin, is recruited to DNA damage sites. However, the mechanism involved in this recruitment and its functional importance during DNA repair remain major unresolved issues. Here, by characterizing HP1α dynamics at laser-induced damage sites in mammalian cells, we show that the de novo accumulation of HP1α occurs within both euchromatin and heterochromatin as a rapid and transient event after DNA damage. This recruitment is strictly dependent on p150CAF-1, the largest subunit of chromatin assembly factor 1 (CAF-1), and its ability to interact with HP1α. We find that HP1α depletion severely compromises the recruitment of the DNA damage response (DDR) proteins 53BP1 and RAD51. Moreover, HP1α depletion leads to defects in homologous recombination–mediated repair and reduces cell survival after DNA damage. Collectively, our data reveal that HP1α recruitment at early stages of the DDR involves p150CAF-1 and is critical for proper DNA damage signaling and repair.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Prasun Chakraborty ◽  
Kevin Hiom

AbstractDouble stranded DNA Breaks (DSB) that occur in highly transcribed regions of the genome are preferentially repaired by homologous recombination repair (HR). However, the mechanisms that link transcription with HR are unknown. Here we identify a critical role for DHX9, a RNA helicase involved in the processing of pre-mRNA during transcription, in the initiation of HR. Cells that are deficient in DHX9 are impaired in the recruitment of RPA and RAD51 to sites of DNA damage and fail to repair DSB by HR. Consequently, these cells are hypersensitive to treatment with agents such as camptothecin and Olaparib that block transcription and generate DSB that specifically require HR for their repair. We show that DHX9 plays a critical role in HR by promoting the recruitment of BRCA1 to RNA as part of the RNA Polymerase II transcription complex, where it facilitates the resection of DSB. Moreover, defects in DHX9 also lead to impaired ATR-mediated damage signalling and an inability to restart DNA replication at camptothecin-induced DSB. Together, our data reveal a previously unknown role for DHX9 in the DNA Damage Response that provides a critical link between RNA, RNA Pol II and the repair of DNA damage by homologous recombination.


2018 ◽  
Vol 131 (23) ◽  
pp. jcs219311 ◽  
Author(s):  
Xiangduo Kong ◽  
Gladys Mae Saquilabon Cruz ◽  
Sally Loyal Trinh ◽  
Xu-Dong Zhu ◽  
Michael W. Berns ◽  
...  

2012 ◽  
Vol 52 (6) ◽  
pp. 311-317 ◽  
Author(s):  
Kaisar A. Talukder ◽  
Ishrat J. Azmi ◽  
K. Ahtesham Ahmed ◽  
M. Sabir Hossain ◽  
Yearul Kabir ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Gergely Rona ◽  
Domenico Roberti ◽  
Yandong Yin ◽  
Julia K Pagan ◽  
Harrison Homer ◽  
...  

The mammalian FBXL10-RNF68-RNF2 ubiquitin ligase complex (FRRUC) mono-ubiquitylates H2A at Lys119 to repress transcription in unstressed cells. We found that the FRRUC is rapidly and transiently recruited to sites of DNA damage in a PARP1- and TIMELESS-dependent manner to promote mono-ubiquitylation of H2A at Lys119, a local decrease of H2A levels, and an increase of H2A.Z incorporation. Both the FRRUC and H2A.Z promote transcriptional repression, double strand break signaling, and homologous recombination repair (HRR). All these events require both the presence and activity of the FRRUC. Moreover, the FRRUC and its activity are required for the proper recruitment of BMI1-RNF2 and MEL18-RNF2, two other ubiquitin ligases that mono-ubiquitylate Lys119 in H2A upon genotoxic stress. Notably, whereas H2A.Z is not required for H2A mono-ubiquitylation, impairment of the latter results in the inhibition of H2A.Z incorporation. We propose that the recruitment of the FRRUC represents an early and critical regulatory step in HRR.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 889 ◽  
Author(s):  
Klaudia Szymonowicz ◽  
Adam Krysztofiak ◽  
Jansje van der Linden ◽  
Ajvar Kern ◽  
Simon Deycmar ◽  
...  

Technical improvements in clinical radiotherapy for maximizing cytotoxicity to the tumor while limiting negative impact on co-irradiated healthy tissues include the increasing use of particle therapy (e.g., proton therapy) worldwide. Yet potential differences in the biology of DNA damage induction and repair between irradiation with X-ray photons and protons remain elusive. We compared the differences in DNA double strand break (DSB) repair and survival of cells compromised in non-homologous end joining (NHEJ), homologous recombination repair (HRR) or both, after irradiation with an equal dose of X-ray photons, entrance plateau (EP) protons, and mid spread-out Bragg peak (SOBP) protons. We used super-resolution microscopy to investigate potential differences in spatial distribution of DNA damage foci upon irradiation. While DNA damage foci were equally distributed throughout the nucleus after X-ray photon irradiation, we observed more clustered DNA damage foci upon proton irradiation. Furthermore, deficiency in essential NHEJ proteins delayed DNA repair kinetics and sensitized cells to both, X-ray photon and proton irradiation, whereas deficiency in HRR proteins sensitized cells only to proton irradiation. We assume that NHEJ is indispensable for processing DNA DSB independent of the irradiation source, whereas the importance of HRR rises with increasing energy of applied irradiation.


2019 ◽  
Vol 47 (12) ◽  
pp. 6299-6314 ◽  
Author(s):  
Jae-Hoon Ji ◽  
Sunwoo Min ◽  
Sunyoung Chae ◽  
Geun-Hyoung Ha ◽  
Yonghyeon Kim ◽  
...  

Abstract Histone H2AX undergoes a phosphorylation switch from pTyr142 (H2AX-pY142) to pSer139 (γH2AX) in the DNA damage response (DDR); however, the functional role of H2AX-pY142 remains elusive. Here, we report a new layer of regulation involving transcription-coupled H2AX-pY142 in the DDR. We found that constitutive H2AX-pY142 generated by Williams-Beuren syndrome transcription factor (WSTF) interacts with RNA polymerase II (RNAPII) and is associated with RNAPII-mediated active transcription in proliferating cells. Also, removal of pre-existing H2AX-pY142 by ATM-dependent EYA1/3 phosphatases disrupts this association and requires for transcriptional silencing at transcribed active damage sites. The following recovery of H2AX-pY142 via translocation of WSTF to DNA lesions facilitates transcription-coupled homologous recombination (TC-HR) in the G1 phase, whereby RAD51 loading, but not RPA32, utilizes RNAPII-dependent active RNA transcripts as donor templates. We propose that the WSTF-H2AX-RNAPII axis regulates transcription and TC-HR repair to maintain genome integrity.


2020 ◽  
Vol 295 (37) ◽  
pp. 12946-12961
Author(s):  
Soichiro S. Ito ◽  
Yosuke Nakagawa ◽  
Masaya Matsubayashi ◽  
Yoshihiko M. Sakaguchi ◽  
Shinko Kobashigawa ◽  
...  

The anticancer agent 5-fluorouracil (5-FU) is cytotoxic and often used to treat various cancers. 5-FU is thought to inhibit the enzyme thymidylate synthase, which plays a role in nucleotide synthesis and has been found to induce single- and double-strand DNA breaks. ATR Ser/Thr kinase (ATR) is a principal kinase in the DNA damage response and is activated in response to UV– and chemotherapeutic drug–induced DNA replication stress, but its role in cellular responses to 5-FU is unclear. In this study, we examined the effect of ATR inhibition on 5-FU sensitivity of mammalian cells. Using immunoblotting, we found that 5-FU treatment dose-dependently induced the phosphorylation of ATR at the autophosphorylation site Thr-1989 and thereby activated its kinase. Administration of 5-FU with a specific ATR inhibitor remarkably decreased cell survival, compared with 5-FU treatment combined with other major DNA repair kinase inhibitors. Of note, the ATR inhibition enhanced induction of DNA double-strand breaks and apoptosis in 5-FU–treated cells. Using gene expression analysis, we found that 5-FU induced the activation of the intra-S cell-cycle checkpoint. Cells lacking BRCA2 were sensitive to 5-FU in the presence of ATR inhibitor. Moreover, ATR inhibition enhanced the efficacy of the 5-FU treatment, independently of the nonhomologous end-joining and homologous recombination repair pathways. These findings suggest that ATR could be a potential therapeutic target in 5-FU–based chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document