scholarly journals Posttranslational marks control architectural and functional plasticity of the nuclear pore complex basket

2016 ◽  
Vol 212 (2) ◽  
pp. 167-180 ◽  
Author(s):  
Carlos A. Niño ◽  
David Guet ◽  
Alexandre Gay ◽  
Sergine Brutus ◽  
Frédéric Jourquin ◽  
...  

The nuclear pore complex (NPC) serves as both the unique gate between the nucleus and the cytoplasm and a major platform that coordinates nucleocytoplasmic exchanges, gene expression, and genome integrity. To understand how the NPC integrates these functional constraints, we dissected here the posttranslational modifications of the nuclear basket protein Nup60 and analyzed how they intervene to control the plasticity of the NPC. Combined approaches highlight the role of monoubiquitylation in regulating the association dynamics of Nup60 and its partner, Nup2, with the NPC through an interaction with Nup84, a component of the Y complex. Although major nuclear transport routes are not regulated by Nup60 modifications, monoubiquitylation of Nup60 is stimulated upon genotoxic stress and regulates the DNA-damage response and telomere repair. Together, these data reveal an original mechanism contributing to the plasticity of the NPC at a molecular-organization and functional level.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1265-1265
Author(s):  
Christine von Klitzing ◽  
Florian Bassermann ◽  
Stephan W. Morris ◽  
Christian Peschel ◽  
Justus Duyster

Abstract The nuclear interaction partner of ALK (NIPA) is a nuclear protein identified by our group in a screen for NPM-ALK interaction partners. We recently reported that NIPA is an F-box protein that assembles with SKP1, Cul1 and Roc1 to establish a novel SCF-type E3 ubiquitin ligase. The formation of the SCFNIPA complex is regulated by cell cycle-dependent phosphorylation of NIPA that restricts SCFNIPA assembly from G1- to late S-phase, thus allowing its substrates to be active from late S-phase throughout mitosis. Proteins involved in cell cycle regulation frequently play a role in DNA damage checkpoints. We therefore sought to determine whether NIPA has a function in the cellular response to genotoxic stress. For this reason we treated NIH/3T3 cells with various DNA-damaging agents. Surprisingly, we observed phosphorylation of NIPA in response to some of these agents, including UV radiation. This phosphorylation was cell cycle phase independent and thus independent of the physiological cell cycle dependent phosphorylation of NIPA. The relevant phosphorylation site is identical to the respective site in the course of cell cycle-dependent phosphorylation of NIPA. Thus, phosphorylation of NIPA upon genotoxic stress would inactivate the SCFNIPA complex in a cell cycle independent manner. Interestingly, this phosphorylation site lies within a consensus site of the Chk1/Chk2 checkpoint kinases. These kinases are central to DNA damage checkpoint signaling. Chk1 is activated by ATR in response to blocked replication forks as they occur after treatment with UV. We performed experiments using the ATM/ATR inhibitor caffeine and the Chk1 inhibitor SB218078 to investigate a potential role of Chk1 in NIPA phosphorylation. Indeed, we found both inhibitors to prevent UV-induced phosphorylation of NIPA. Current experiments applying Chk1 knock-out cells will unravel the role of Chk1 in NIPA phosphorylation. Additional experiments were performed to investigate a function for NIPA in DNA-damage induced apoptosis. In this regard, we observed overexpression of NIPA WT to induce apoptosis in response to UV, whereas no proapoptotic effect was seen with the phosphorylation deficient NIPA mutant. Therefore, the phosphorylated form of NIPA may be involved in apoptotic signaling pathways. In summary, we present data suggesting a cell cycle independent function for NIPA. This activity is involved in DNA damage response and may be involved in regulating apoptosis upon genotoxic stress.


2020 ◽  
Author(s):  
Anvita Bhargava ◽  
Mathieu Maurin ◽  
Patricia M. Davidson ◽  
Mabel Jouve ◽  
Xavier Lahaye ◽  
...  

AbstractThe Human Immunodeficiency Virus (HIV) enters the nucleus to establish infection. HIV interacts with nuclear pore components to cross the nuclear envelope. In contrast, the role of other proteins of the nuclear envelope in HIV infection is not yet understood. The inner nuclear transmembrane proteins SUN1 and SUN2 connect lamins in the interior of the nucleus to the cytoskeleton in the cytoplasm. Increased levels of SUN1 or SUN2 potently restrict HIV infection through an unresolved mechanism. Here, we find that SUN1 and SUN2 exhibit a differential and viral strain-specific antiviral activity HIV-1 and HIV-2. In macrophages and HeLa cells, HIV-1 and HIV-2 are respectively preferentially inhibited by SUN1 and SUN2. This specificity maps to the nucleoplasmic domain of SUN proteins, which associates with Lamin A/C and participates to the DNA damage response. We find that etoposide, a DNA-damaging drug, stimulates infection. Inhibition of the DNA damage signaling kinase ATR, which induces a DNA damage response, also enhances HIV-1 infection. The proviral effect of ATR inhibition on infection requires the HIV-1 Vpr gene. Depletion of endogenous Lamin A/C, which sensitizes cells to DNA damage, also enhances HIV-1 infection in HeLa cells. SUN1 overexpression neutralizes these proviral effects, while the antiviral effect of SUN2 is rescued by etoposide treatment. Finally, we show that inhibition of HIV-1 infection by overexpressed SUN proteins and endogenous Lamin A/C is associated with reduced internal movements of chromatin and reduced rotations of the nucleus. Altogether, these results highlight distinct antiviral activities of SUN1 and SUN2 and reveal an emerging role of nuclear movements and the DNA damage response in the control of HIV infection by structural components of the nuclear envelope.


2009 ◽  
Vol 11 (8) ◽  
pp. 980-987 ◽  
Author(s):  
Basheer Khadaroo ◽  
M. Teresa Teixeira ◽  
Pierre Luciano ◽  
Nadine Eckert-Boulet ◽  
Susanne M. Germann ◽  
...  

2009 ◽  
Vol 29 (24) ◽  
pp. 6335-6340 ◽  
Author(s):  
Christoffel Dinant ◽  
Martijn S. Luijsterburg

ABSTRACT Heterochromatin protein 1 (HP1) family members are versatile proteins involved in transcription, chromatin organization, and replication. Recent findings now have implicated HP1 proteins in the DNA damage response as well. Cell-biological approaches showed that reducing the levels of all three HP1 isoforms enhances DNA repair, possibly due to heterochromatin relaxation. Additionally, HP1 is phosphorylated in response to DNA damage, which was suggested to initiate the DNA damage response. These findings have led to the conclusion that heterochromatic proteins are inhibitory to repair and that their dissociation from heterochromatin may facilitate repair. In contrast with an inhibitory role, a more active role for HP1 in DNA repair also was proposed based on the finding that all HP1 isoforms are recruited to UV-induced lesions, oxidative lesions, and DNA breaks. The loss of HP1 renders nematodes highly sensitive to DNA damage, and mice lacking HP1β suffer from genomic instability, suggesting that the loss of HP1 is not necessarily beneficial for repair. These findings raise the possibility that HP1 facilitates DNA repair by reorganizing chromatin, which may involve interactions between phosphorylated HP1 and other DNA damage response proteins. Taken together, these studies illustrate an emerging role of HP1 proteins in the response to genotoxic stress.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 504
Author(s):  
Takayuki Saitoh ◽  
Tsukasa Oda

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.


2019 ◽  
Vol 105 (3) ◽  
pp. 839-853
Author(s):  
Aglaia Kyrilli ◽  
David Gacquer ◽  
Vincent Detours ◽  
Anne Lefort ◽  
Frédéric Libert ◽  
...  

Abstract Background The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. Methods Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (β radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. Results Overall, the thyrocyte responses following exposure to β or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. β and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to β/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. Conclusions TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.


2009 ◽  
Vol 185 (3) ◽  
pp. 475-491 ◽  
Author(s):  
Evgeny Onischenko ◽  
Leslie H. Stanton ◽  
Alexis S. Madrid ◽  
Thomas Kieselbach ◽  
Karsten Weis

The nuclear pore complex (NPC) mediates all nucleocytoplasmic transport, yet its structure and biogenesis remain poorly understood. In this study, we have functionally characterized interaction partners of the yeast transmembrane nucleoporin Ndc1. Ndc1 forms a distinct complex with the transmembrane proteins Pom152 and Pom34 and two alternative complexes with the soluble nucleoporins Nup53 and Nup59, which in turn bind to Nup170 and Nup157. The transmembrane and soluble Ndc1-binding partners have redundant functions at the NPC, and disruption of both groups of interactions causes defects in Ndc1 targeting and in NPC structure accompanied by significant pore dilation. Using photoconvertible fluorescent protein fusions, we further show that the depletion of Pom34 in cells that lack NUP53 and NUP59 blocks new NPC assembly and leads to the reversible accumulation of newly made nucleoporins in cytoplasmic foci. Therefore, Ndc1 together with its interaction partners are collectively essential for the biosynthesis and structural integrity of yeast NPCs.


Sign in / Sign up

Export Citation Format

Share Document