scholarly journals G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits

2016 ◽  
Vol 212 (7) ◽  
Author(s):  
Nancy Kedersha ◽  
Marc D. Panas ◽  
Christopher A. Achorn ◽  
Shawn Lyons ◽  
Sarah Tisdale ◽  
...  

Mammalian stress granules (SGs) contain stalled translation preinitiation complexes that are assembled into discrete granules by specific RNA-binding proteins such as G3BP. We now show that cells lacking both G3BP1 and G3BP2 cannot form SGs in response to eukaryotic initiation factor 2α phosphorylation or eIF4A inhibition, but are still SG-competent when challenged with severe heat or osmotic stress. Rescue experiments using G3BP1 mutants show that G3BP1-F33W, a mutant unable to bind G3BP partner proteins Caprin1 or USP10, rescues SG formation. Caprin1/USP10 binding to G3BP is mutually exclusive: Caprin binding promotes, but USP10 binding inhibits, SG formation. G3BP interacts with 40S ribosomal subunits through its RGG motif, which is also required for G3BP-mediated SG formation. We propose that G3BP mediates the condensation of SGs by shifting between two different states that are controlled by binding to Caprin1 or USP10.

Author(s):  
Benjamin L. Zaepfel ◽  
Jeffrey D. Rothstein

Stress granule formation is a complex and rapidly evolving process that significantly disrupts cellular metabolism in response to a variety of cellular stressors. Recently, it has become evident that different chemical stressors lead to the formation of compositionally distinct stress granules. However, it is unclear which proteins are required for the formation of stress granules under different conditions. In addition, the effect of various stressors on polyadenylated RNA metabolism remains enigmatic. Here, we demonstrate that G3BP1/2, which are common stress granule components, are not required for the formation of stress granules specifically during osmotic stress induced by sorbitol and related polyols. Furthermore, sorbitol-induced osmotic stress leads to significant depletion of nuclear polyadenylated RNA, a process that we demonstrate is dependent on active mRNA export, as well as cytoplasmic and subnuclear shifts in the presence of many nuclear RNA-binding proteins. We assessed the function of multiple shifted RBPs and found that hnRNP U, but not TDP-43 or hnRNP I, exhibit reduced function following this cytoplasmic shift. Finally, we observe that multiple stress pathways lead to a significant reduction in transcription, providing a possible explanation for our inability to observe loss of TDP-43 or hnRNP I function. Overall, we identify unique outcomes following osmotic stress that provide important insight into the regulation of RNA-binding protein localization and function.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Joshua R Wheeler ◽  
Tyler Matheny ◽  
Saumya Jain ◽  
Robert Abrisch ◽  
Roy Parker

Stress granules are non-membrane bound RNA-protein (RNP) assemblies that form when translation initiation is limited and contain a biphasic structure with stable core structures surrounded by a less concentrated shell. The order of assembly and disassembly of these two structures remains unknown. Time course analysis of granule assembly suggests that core formation is an early event in granule assembly. Stress granule disassembly is also a stepwise process with shell dissipation followed by core clearance. Perturbations that alter liquid-liquid phase separations (LLPS) driven by intrinsically disordered protein regions (IDR) of RNA binding proteins in vitro have the opposite effect on stress granule assembly in vivo. Taken together, these observations argue that stress granules assemble through a multistep process initiated by stable assembly of untranslated mRNPs into core structures, which could provide sufficient high local concentrations to allow for a localized LLPS driven by IDRs on RNA binding proteins.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ravi Kumar Alluri ◽  
Zhongwei Li ◽  
Keith R. McCrae

Reactive oxygen species (ROS) generated under oxidative stress (OS) cause oxidative damage to RNA. Recent studies have suggested a role for oxidized RNA in several human disorders. Under the conditions of oxidative stress, mRNAs released from polysome dissociation accumulate and initiate stress granule (SG) assembly. SGs are highly enriched in mRNAs, containing inverted repeat (IR) Alus in 3′ UTRs, AU-rich elements, and RNA-binding proteins. SGs and processing bodies (P-bodies) transiently interact through a docking mechanism to allow the exchange of RNA species. However, the types of RNA species exchanged, and the mechanisms and outcomes of exchange are still unknown. Specialized RNA-binding proteins, including adenosine deaminase acting on RNA (ADAR1-p150), with an affinity toward inverted repeat Alus, and Tudor staphylococcal nuclease (Tudor-SN) are specifically recruited to SGs under OS along with an RNA transport protein, Staufen1 (STAU1), but their precise biochemical roles in SGs and SG/P-body docking are uncertain. Here, we critically review relevant literature and propose a hypothetical mechanism for the processing and decay of oxidized-RNA in SGs/P-bodies, as well as the role of ADAR1-p150, Tudor-SN, and STAU1.


2019 ◽  
Author(s):  
Ye Fu ◽  
Xiaowei Zhuang

AbstractDiverse RNAs and RNA-binding proteins form phase-separated, membraneless granules in cells under stress conditions. However, the role of the prevalent mRNA methylation, m6A, and its binding proteins in stress granule (SG) assembly remain unclear. Here, we show that m6A-modified mRNAs are enriched in SGs, and that m6A-binding YTHDF proteins are critical for SG formation. Depletion of YTHDF1/3 inhibits SG formation and recruitment of m6A-modified mRNAs to SGs. Both the N-terminal intrinsically disordered region and the C-terminal m6A-binding YTH domain of YTHDF proteins are crucial for SG formation. Super-resolution imaging further reveals that YTHDF proteins are in a super-saturated state, forming clusters that reside in the periphery of and at the junctions between SG core clusters, and promote SG phase separation by reducing the activation energy barrier and critical size for condensate formation. Our results reveal a new function and mechanistic insights of the m6A-binding YTHDF proteins in regulating phase separation.


Reproduction ◽  
2010 ◽  
Vol 139 (2) ◽  
pp. 381-393 ◽  
Author(s):  
Masashi Yamaji ◽  
Takashi Tanaka ◽  
Mayo Shigeta ◽  
Shinichiro Chuma ◽  
Yumiko Saga ◽  
...  

Mutations of RNA-binding proteins such as NANOS3, TIAL1, and DND1 in mice have been known to result in the failure of survival and/or proliferation of primordial germ cells (PGCs) soon after their fate is specified (around embryonic day (E) 8.0), leading to the infertility of these animals. However, the mechanisms of actions of these RNA-binding proteins remain largely unresolved. As a foundation to explore the role of these RNA-binding proteins in germ cells, we established a novel transgenic reporter strain that expresses NANOS3 fused with EGFP under the control of Nanos3 regulatory elements. NANOS3–EGFP exhibited exclusive expression in PGCs as early as E7.25, and continued to be expressed in female germ cells until around E14.5 and in male germ cells throughout the fetal period with declining expression levels after E16.5. NANOS3–EGFP resumed strong expression in postnatal spermatogonia and continued to be expressed in undifferentiated spermatogonial cells in adults. Importantly, the Nanos3–EGFP transgene rescued the sterile phenotype of Nanos3 homozygous mutants, demonstrating the functional equivalency of NANOS3–EGFP with endogenous NANOS3. We found that throughout germ cell development, a predominant amount of  NANOS3–EGFP co-localized with TIAL1 (also known as TIAR) and phosphorylated eukaryotic initiation factor 2α, markers for the stress granules, whereas a fraction of it showed co-localization with DCP1A, a marker for the processing bodies. On the other hand, NANOS3–EGFP did not co-localize with Tudor domain-containing protein 1, a marker for the intermitochondrial cements, in spermatogenic cells. These findings unveil the presence of distinct posttranscriptional regulations in PGCs soon after their specification, for which RNA-binding proteins such as NANOS3 and TIAL1 would play critical functions.


2013 ◽  
Vol 201 (3) ◽  
pp. 361-372 ◽  
Author(s):  
Yun R. Li ◽  
Oliver D. King ◽  
James Shorter ◽  
Aaron D. Gitler

Amyotrophic lateral sclerosis (ALS) is a fatal human neurodegenerative disease affecting primarily motor neurons. Two RNA-binding proteins, TDP-43 and FUS, aggregate in the degenerating motor neurons of ALS patients, and mutations in the genes encoding these proteins cause some forms of ALS. TDP-43 and FUS and several related RNA-binding proteins harbor aggregation-promoting prion-like domains that allow them to rapidly self-associate. This property is critical for the formation and dynamics of cellular ribonucleoprotein granules, the crucibles of RNA metabolism and homeostasis. Recent work connecting TDP-43 and FUS to stress granules has suggested how this cellular pathway, which involves protein aggregation as part of its normal function, might be coopted during disease pathogenesis.


1999 ◽  
Vol 147 (7) ◽  
pp. 1431-1442 ◽  
Author(s):  
Nancy L. Kedersha ◽  
Mita Gupta ◽  
Wei Li ◽  
Ira Miller ◽  
Paul Anderson

In response to environmental stress, the related RNA-binding proteins TIA-1 and TIAR colocalize with poly(A)+ RNA at cytoplasmic foci that resemble the stress granules (SGs) that harbor untranslated mRNAs in heat shocked plant cells (Nover et al. 1989; Nover et al. 1983; Scharf et al. 1998). The accumulation of untranslated mRNA at SGs is reversible in cells that recover from a sublethal stress, but irreversible in cells subjected to a lethal stress. We have found that the assembly of TIA-1/R+ SGs is initiated by the phosphorylation of eIF-2α. A phosphomimetic eIF-2α mutant (S51D) induces the assembly of SGs, whereas a nonphosphorylatable eIF-2α mutant (S51A) prevents the assembly of SGs. The ability of a TIA-1 mutant lacking its RNA-binding domains to function as a transdominant inhibitor of SG formation suggests that this RNA-binding protein acts downstream of the phosphorylation of eIF-2α to promote the sequestration of untranslated mRNAs at SGs. The assembly and disassembly of SGs could regulate the duration of stress- induced translational arrest in cells recovering from environmental stress.


2007 ◽  
Vol 27 (18) ◽  
pp. 6469-6483 ◽  
Author(s):  
John L. Goodier ◽  
Lili Zhang ◽  
Melissa R. Vetter ◽  
Haig H. Kazazian

ABSTRACT LINE-1 retrotransposons constitute one-fifth of human DNA and have helped shape our genome. A full-length L1 encodes a 40-kDa RNA-binding protein (ORF1p) and a 150-kDa protein (ORF2p) with endonuclease and reverse transcriptase activities. ORF1p is distinctive in forming large cytoplasmic foci, which we identified as cytoplasmic stress granules. A phylogenetically conserved central region of the protein is critical for wild-type localization and retrotransposition. Yeast two-hybrid screens revealed several RNA-binding proteins that coimmunoprecipitate with ORF1p and colocalize with ORF1p in foci. Two of these proteins, YB-1 and hnRNPA1, were previously reported in stress granules. We identified additional proteins associated with stress granules, including DNA-binding protein A, 9G8, and plasminogen activator inhibitor RNA-binding protein 1 (PAI-RBP1). PAI-RBP1 is a homolog of VIG, a part of the Drosophila melanogaster RNA-induced silencing complex (RISC). Other RISC components, including Ago2 and FMRP, also colocalize with PAI-RBP1 and ORF1p. We suggest that targeting ORF1p, and possibly the L1 RNP, to stress granules is a mechanism for controlling retrotransposition and its associated genetic and cellular damage.


2021 ◽  
Author(s):  
Wessel van Leeuwen ◽  
Michael VanInsberghe ◽  
Nico Battich ◽  
Fredrik Salmen ◽  
Alexander van Oudenaarden ◽  
...  

Stress granules are phase separated assemblies formed around mRNAs whose identities remain elusive. The techniques available to identify the RNA content of stress granules rely on their physical purification, and are therefore not suitable for single cells and tissues displaying cell heterogeneity. Here, we adapted TRIBE (Target of RNA-binding proteins Identified by Editing) to detect stress granule RNAs by fusing a stress granule RNA-binding protein (FMR1) to the catalytic domain of an RNA-editing enzyme (ADAR). RNAs colocalized with this fusion are edited, producing mutations that are detectable by sequencing. We first optimized the expression of this fusion protein so that RNA editing preferentially occurs in stress granules. We then show that this purification-free method can reliably identify stress granule RNAs in bulk and single S2 cells, and in Drosophila tissues, such as 398 neuronal stress granule mRNAs encoding ATP binding, cell cycle and transcription factors. This new method opens the possibility to identify the RNA content of stress granules as well other RNA based assemblies in single cells derived from tissues.


Sign in / Sign up

Export Citation Format

Share Document