scholarly journals Membrane tension controls adhesion positioning at the leading edge of cells

2017 ◽  
Vol 216 (9) ◽  
pp. 2959-2977 ◽  
Author(s):  
Bruno Pontes ◽  
Pascale Monzo ◽  
Laurent Gole ◽  
Anabel-Lise Le Roux ◽  
Anita Joanna Kosmalska ◽  
...  

Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II–independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells.

2016 ◽  
Vol 27 (24) ◽  
pp. 3828-3840 ◽  
Author(s):  
Mengke Xing ◽  
Marshall C. Peterman ◽  
Robert L. Davis ◽  
Karen Oegema ◽  
Andrew K. Shiau ◽  
...  

The mechanism of directional cell migration remains an important problem, with relevance to cancer invasion and metastasis. GOLPH3 is a common oncogenic driver of human cancers, and is the first oncogene that functions at the Golgi in trafficking to the plasma membrane. Overexpression of GOLPH3 is reported to drive enhanced cell migration. Here we show that the phosphatidylinositol-4-phosphate/GOLPH3/myosin 18A/F-actin pathway that is critical for Golgi–to–plasma membrane trafficking is necessary and limiting for directional cell migration. By linking the Golgi to the actin cytoskeleton, GOLPH3 promotes reorientation of the Golgi toward the leading edge. GOLPH3 also promotes reorientation of lysosomes (but not other organelles) toward the leading edge. However, lysosome function is dispensable for migration and the GOLPH3 dependence of lysosome movement is indirect, via GOLPH3’s effect on the Golgi. By driving reorientation of the Golgi to the leading edge and driving forward trafficking, particularly to the leading edge, overexpression of GOLPH3 drives trafficking to the leading edge of the cell, which is functionally important for directional cell migration. Our identification of a novel pathway for Golgi reorientation controlled by GOLPH3 provides new insight into the mechanism of directional cell migration with important implications for understanding GOLPH3’s role in cancer.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Fei Xue ◽  
Deanna M. Janzen ◽  
David A. Knecht

Numerous F-actin containing structures are involved in regulating protrusion of membrane at the leading edge of motile cells. We have investigated the structure and dynamics of filopodia as they relate to events at the leading edge and the function of the trailing actin networks. We have found that although filopodia contain parallel bundles of actin, they contain a surprisingly nonuniform spatial and temporal distribution of actin binding proteins. Along the length of the actin filaments in a single filopodium, the most distal portion contains primarily T-plastin, while the proximal portion is primarily bound byα-actinin and coronin. Some filopodia are stationary, but lateral filopodia move with respect to the leading edge. They appear to form a mechanical link between the actin polymerization network at the front of the cell and the myosin motor activity in the cell body. The direction of lateral filopodial movement is associated with the direction of cell migration. When lateral filopodia initiate from and move toward only one side of a cell, the cell will turn opposite to the direction of filopodial flow. Therefore, this filopodia-myosin II system allows actin polymerization driven protrusion forces and myosin II mediated contractile force to be mechanically coordinated.


2021 ◽  
Author(s):  
Erik S Linklater ◽  
Emily Duncan ◽  
Ke Jun Han ◽  
Algirdas Kaupinis ◽  
Mindaugas Valius ◽  
...  

Rab40b is a SOCS box containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b/Cullin5 binding decreases cell motility and invasive potential, and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b/Cullin5 dependent localized ubiquitylation and degradation. Thus, we propose a model where the Rab40b/Cullin5 dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.


2019 ◽  
Vol 12 (579) ◽  
pp. eaav5938 ◽  
Author(s):  
Mallika Ghosh ◽  
Robin Lo ◽  
Ivan Ivic ◽  
Brian Aguilera ◽  
Veneta Qendro ◽  
...  

Cell attachment to the extracellular matrix (ECM) requires a balance between integrin internalization and recycling to the surface that is mediated by numerous proteins, emphasizing the complexity of these processes. Upon ligand binding in various cells, the β1 integrin is internalized, traffics to early endosomes, and is returned to the plasma membrane through recycling endosomes. This trafficking process depends on the cyclical activation and inactivation of small guanosine triphosphatases (GTPases) by their specific guanine exchange factors (GEFs) and their GTPase-activating proteins (GAPs). In this study, we found that the cell surface antigen CD13, a multifunctional transmembrane molecule that regulates cell-cell adhesion and receptor-mediated endocytosis, also promoted cell migration and colocalized with β1 integrin at sites of cell adhesion and at the leading edge. A lack of CD13 resulted in aberrant trafficking of internalized β1 integrin to late endosomes and its ultimate degradation. Our data indicate that CD13 promoted ARF6 GTPase activity by positioning the ARF6-GEF EFA6 at the cell membrane. In migrating cells, a complex containing phosphorylated CD13, IQGAP1, GTP-bound (active) ARF6, and EFA6 at the leading edge promoted the ARF6 GTPase cycling and cell migration. Together, our findings uncover a role for CD13 in the fundamental cellular processes of receptor recycling, regulation of small GTPase activities, cell-ECM interactions, and cell migration.


2020 ◽  
Vol 31 (20) ◽  
pp. 2234-2248
Author(s):  
Maha Abedrabbo ◽  
Shoshana Ravid

Here we show that Scribble (Scrib), Lethal giant larvae 1 (Lgl1), and myosin II form a complex in vivo and colocalize at the cell leading edge of migrating cells, and this colocalization is interdependent. Scrib and Lgl1 are required for proper cell adhesion, polarity, and migration.


2013 ◽  
Vol 104 (7) ◽  
pp. 817-825 ◽  
Author(s):  
Shaobin Ni ◽  
Jianran Hu ◽  
Yongshun Duan ◽  
Shuliang Shi ◽  
Ruo Li ◽  
...  

2012 ◽  
Vol 197 (3) ◽  
pp. 439-455 ◽  
Author(s):  
Ryan J. Petrie ◽  
Núria Gavara ◽  
Richard S. Chadwick ◽  
Kenneth M. Yamada

We search in this paper for context-specific modes of three-dimensional (3D) cell migration using imaging for phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and active Rac1 and Cdc42 in primary fibroblasts migrating within different 3D environments. In 3D collagen, PIP3 and active Rac1 and Cdc42 were targeted to the leading edge, consistent with lamellipodia-based migration. In contrast, elongated cells migrating inside dermal explants and the cell-derived matrix (CDM) formed blunt, cylindrical protrusions, termed lobopodia, and Rac1, Cdc42, and PIP3 signaling was nonpolarized. Reducing RhoA, Rho-associated protein kinase (ROCK), or myosin II activity switched the cells to lamellipodia-based 3D migration. These modes of 3D migration were regulated by matrix physical properties. Specifically, experimentally modifying the elasticity of the CDM or collagen gels established that nonlinear elasticity supported lamellipodia-based migration, whereas linear elasticity switched cells to lobopodia-based migration. Thus, the relative polarization of intracellular signaling identifies two distinct modes of 3D cell migration governed intrinsically by RhoA, ROCK, and myosin II and extrinsically by the elastic behavior of the 3D extracellular matrix.


2010 ◽  
Vol 299 (2) ◽  
pp. C345-C353 ◽  
Author(s):  
Brian C. DiPaolo ◽  
Guillaume Lenormand ◽  
Jeffrey J. Fredberg ◽  
Susan S. Margulies

Alveolar epithelial cells (AEC) maintain integrity of the blood-gas barrier with gasket-like intercellular tight junctions (TJ) that are anchored internally to the actin cytoskeleton. We hypothesize that stretch rapidly reorganizes actin (<10 min) into a perijunctional actin ring (PJAR) in a manner that is dependent on magnitude and frequency of the stretch, accompanied by spontaneous movement of actin-anchored receptors at the plasma membrane. Primary AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min, or held tonic at 25% ΔSA for up to 60 min, or left unstretched. By 10 min of stretch PJARs were evident in 25% and 37% ΔSA at 0.25 Hz, but not for 12% ΔSA at 0.25 Hz, or at tonic 25% ΔSA, or with no stretch. Treatment with 1 μM jasplakinolide abolished stretch-induced PJAR formation, however. As a rough index of remodeling rate, we measured spontaneous motions of 5-μm microbeads bound to actin focal adhesion complexes on the apical membrane surfaces; within 1 min of exposure to ΔSA of 25% and 37%, these motions increased substantially, increased with increasing stretch frequency, and were consistent with our mechanistic hypothesis. With a tonic stretch, however, the spontaneous motion of microbeads attenuated back to unstretched levels, whereas PJAR remained unchanged. Stretch did not increase spontaneous microbead motion in human alveolar epithelial adenocarcinoma A549 monolayers, confirming that this actin remodeling response to stretch was a cell-type specific response. In summary, stretch of primary rat AEC monolayers forms PJARs and rapidly reorganized actin binding sites at the plasma membrane in a manner dependent on stretch magnitude and frequency.


2021 ◽  
Author(s):  
Keith R Carney ◽  
Akib M Khan ◽  
Shiela C Samson ◽  
Nikhil Mittal ◽  
Sangyoon J Han ◽  
...  

Cell migration is essential to physiological and pathological biology. Migration is driven by the motion of a leading edge, in which actin polymerization pushes against the edge and adhesions transmit traction to the substrate while membrane tension increases. How the actin and adhesions synergistically control edge protrusion remains elusive. We addressed this question by developing a computational model in which the Brownian ratchet mechanism governs actin filament polymerization against the membrane and the molecular clutch mechanism governs adhesion to the substrate (BR-MC model). Our model predicted that actin polymerization is the most significant driver of protrusion, as actin had a greater effect on protrusion than adhesion assembly. Increasing the lifetime of nascent adhesions also enhanced velocity, but decreased the protrusion's motional persistence, because filaments maintained against the cell edge ceased polymerizing as membrane tension increased. We confirmed the model predictions with measurement of adhesion lifetime and edge motion in migrating cells. Adhesions with longer lifetime were associated with faster protrusion velocity and shorter persistence. Experimentally increasing adhesion lifetime increased velocity but decreased persistence. We propose a mechanism for actin polymerization-driven, adhesion-dependent protrusion in which balanced nascent adhesion assembly and lifetime generates protrusions with the power and persistence to drive migration.


Sign in / Sign up

Export Citation Format

Share Document