scholarly journals Reciprocal and dynamic polarization of planar cell polarity core components and myosin

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Erin Newman-Smith ◽  
Matthew J Kourakis ◽  
Wendy Reeves ◽  
Michael Veeman ◽  
William C Smith

The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization.

2018 ◽  
Vol 217 (5) ◽  
pp. 1633-1641 ◽  
Author(s):  
Sun K. Kim ◽  
Siwei Zhang ◽  
Michael E. Werner ◽  
Eva J. Brotslaw ◽  
Jennifer W. Mitchell ◽  
...  

Most epithelial cells polarize along the axis of the tissue, a feature known as planar cell polarity (PCP). The initiation of PCP requires cell–cell signaling via the noncanonical Wnt/PCP pathway. Additionally, changes in the cytoskeleton both facilitate and reflect this polarity. We have identified CLAMP/Spef1 as a novel regulator of PCP signaling. In addition to decorating microtubules (MTs) and the ciliary rootlet, a pool of CLAMP localizes at the apical cell cortex. Depletion of CLAMP leads to the loss of PCP protein asymmetry, defects in cilia polarity, and defects in the angle of cell division. Additionally, depletion of CLAMP leads to a loss of the atypical cadherin-like molecule Celrs2, suggesting that CLAMP facilitates the stabilization of junctional interactions responsible for proper PCP protein localization. Depletion of CLAMP also affects the polarized organization of MTs. We hypothesize that CLAMP facilitates the establishment of cell polarity and promotes the asymmetric accumulation of MTs downstream of the establishment of proper PCP.


2015 ◽  
Author(s):  
Erin Newman-Smith ◽  
Matthew J Kourakis ◽  
Wendy Reeves ◽  
Michael Veeman ◽  
William C Smith

2002 ◽  
Vol 2 ◽  
pp. 434-454 ◽  
Author(s):  
Jeffrey D. Axelrod ◽  
Helen McNeill

Epithelial cells and other groups of cells acquire a polarity orthogonal to their apical–basal axes, referred to as Planar Cell Polarity (PCP). The process by which these cells become polarized requires a signaling pathway using Frizzled as a receptor. Responding cells sense cues from their environment that provide directional information, and they translate this information into cellular asymmetry. Most of what is known about PCP derives from studies in the fruit fly,Drosophila. We review what is known about how cells translate an unknown signal into asymmetric cytoskeletal reorganization. We then discuss how the vertebrate processes of convergent extension and cochlear hair-cell development may relate toDrosophilaPCP signaling.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Alison Schmidt ◽  
Matthew Durbin, MS MD ◽  
James O’Kane, MS ◽  
Stephanie M. Ware, MD PHD

Congenital heart disease (CHD) is the most common cause of death due to birth defects. Despite CHD frequency, the etiology remains mostly unknown. Understanding CHD genetics and elucidating disease mechanism will help establish prognosis, identify comorbidity risks, and develop targeted therapies. CHD often results from disrupted cytoarchitecture and signaling pathways. We have identified a novel CHD candidate SHROOM3, a protein associated with the actin cytoskeleton and the Wnt/Planar Cell Polarity (PCP) signaling pathway. SHROOM3 induces actomyosin constriction within the apical side of cells and is implicated in neural tube defects and chronic renal failure in humans. A recent study demonstrated that SHROOM3 interacts with Dishevelled2 (DVL2), a component of the PCP signaling pathway, suggesting that SHROOM3 serves as an important link between acto-myosin constriction and PCP signaling. PCP signaling establishes cell polarity required for multiple developmental processes, and is required for cardiac development. In Preliminary data we utilized a Shroom3 gene-trap mouse (Shroom3gt/gt) to demonstrated that SHROOM3 disruption leads to cardiac defects phenocopy PCP disruption. We also demonstrate that patients with CHD phenotypes have rare and potentially damaging SHROOM3 variants within SHROOM3’s PCP-binding domain. We hypothesize SHROOM3 is a novel terminal effector of PCP signaling, and disruption is a novel contributor to CHD. To test this, we assessed genetic interaction between SHROOM3 and PCP during cardiac development and the ultimate effect on cell structure and movement. Heterozygous Shroom3+/gt mice and heterozygous Dvl2 +/- mice are phenotypically normal. We demonstrated genetic interaction between SHROOM3 and PCP signaling by generating compound heterozygous Shroom3+/gt ;Dvl2 +/- mice and identifying a Double Outlet Right Ventricle and Ventricular Septal Defect in one embryo. We also observed fewer compound heterozygous mice than anticipated by Mendelian rations (observed: 18.4%; expected: 25%; n=76), suggesting potential lethality in utero. Immunohistochemistry demonstrates disrupted actomyosin in the SHROOM3gt/gt mice, characteristic of PCP disruption. These data help strengthen SHROOM3 as a novel CHD candidate gene and a component of the PCP Signaling pathway. Further characterization of this gene is important for CHD diagnosis and therapeutic development.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Gang Wu ◽  
Jiao Ge ◽  
Xupei Huang ◽  
Yimin Hua ◽  
Dezhi Mu

Congenital heart disease (CHD) is a common cardiac disorder in humans. Despite many advances in the understanding of CHD and the identification of many associated genes, the fundamental etiology for the majority of cases remains unclear. The planar cell polarity (PCP) signaling pathway, responsible for tissue polarity inDrosophilaand gastrulation movements and cardiogenesis in vertebrates, has been shown to play multiple roles during cardiac differentiation and development. The disrupted function of PCP signaling is connected to some CHDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of CHD.


Science ◽  
2010 ◽  
Vol 329 (5997) ◽  
pp. 1337-1340 ◽  
Author(s):  
Su Kyoung Kim ◽  
Asako Shindo ◽  
Tae Joo Park ◽  
Edwin C. Oh ◽  
Srimoyee Ghosh ◽  
...  

The planar cell polarity (PCP) signaling pathway governs collective cell movements during vertebrate embryogenesis, and certain PCP proteins are also implicated in the assembly of cilia. The septins are cytoskeletal proteins controlling behaviors such as cell division and migration. Here, we identified control of septin localization by the PCP protein Fritz as a crucial control point for both collective cell movement and ciliogenesis in Xenopus embryos. We also linked mutations in human Fritz to Bardet-Biedl and Meckel-Gruber syndromes, a notable link given that other genes mutated in these syndromes also influence collective cell movement and ciliogenesis. These findings shed light on the mechanisms by which fundamental cellular machinery, such as the cytoskeleton, is regulated during embryonic development and human disease.


Development ◽  
2015 ◽  
Vol 142 (19) ◽  
pp. 3429-3439 ◽  
Author(s):  
Mitchell T. Butler ◽  
John B. Wallingford

2021 ◽  
Author(s):  
Mohd. Suhail Rizvi ◽  
Divyoj Singh ◽  
Mohit Kumar Jolly

Planar Cell Polarity (PCP), characterized by asymmetric localization of proteins at the cell membrane within the epithelial plane, plays essential roles in embryonic development and physiological functions. The significance of PCP can be appreciated by the outcomes of PCP failure in the form of defects in neural tube formation, tracheal malfunctions, organ shape misregulation, hair follicle misalignment etc. Extensive experimental works on PCP in fruit fly Drosophila melanogaster have classified the proteins involved in PCP into two modules: 'core' module, acting locally by inter-cellular protein interactions, and, 'global' module, responsible for the alignment of cell polarities with that of the tissue axis. Despite the involvement of different molecular players, the asymmetric localization of the proteins of the two modules on cell membrane primarily involve inter-cellular dimer formations. We have developed a continuum model of the localization of PCP proteins on the cell membrane and its regulation via intra- and inter-cellular protein-protein interactions. We have identified the conditions for the asymmetric protein localization, or PCP establishment, for uniform and graded protein expression levels in the tissue. We have found that in the absence of any tissue level expression gradient the polarized state of the tissue is not stable against finite length perturbations which is also a property of the active polar matter. However, in the presence of tissue level expression gradients of proteins the polarized state remains stable. We have also looked at the influence of the loss of PCP proteins from a select regions of the tissue on the polarization of the cells outside of that region. This continuum theory of the planar cell polarity can be coupled with the active matter hydrodynamics to study the cell flows and their regulation by genetic machinery.


2019 ◽  
Vol 116 (11) ◽  
pp. 4999-5008 ◽  
Author(s):  
Andre Landin Malt ◽  
Zachary Dailey ◽  
Julia Holbrook-Rasmussen ◽  
Yuqiong Zheng ◽  
Arielle Hogan ◽  
...  

In the inner ear sensory epithelia, stereociliary hair bundles atop sensory hair cells are mechanosensory apparatus with planar polarized structure and orientation. This is established during development by the concerted action of tissue-level, intercellular planar cell polarity (PCP) signaling and a hair cell-intrinsic, microtubule-mediated machinery. However, how various polarity signals are integrated during hair bundle morphogenesis is poorly understood. Here, we show that the conserved cell polarity protein Par3 is essential for planar polarization of hair cells. Par3 deletion in the inner ear disrupted cochlear outgrowth, hair bundle orientation, kinocilium positioning, and basal body planar polarity, accompanied by defects in the organization and cortical attachment of hair cell microtubules. Genetic mosaic analysis revealed that Par3 functions both cell-autonomously and cell-nonautonomously to regulate kinocilium positioning and hair bundle orientation. At the tissue level, intercellular PCP signaling regulates the asymmetric localization of Par3, which in turn maintains the asymmetric localization of the core PCP protein Vangl2. Mechanistically, Par3 interacts with and regulates the localization of Tiam1 and Trio, which are guanine nucleotide exchange factors (GEFs) for Rac, thereby stimulating Rac-Pak signaling. Finally, constitutively active Rac1 rescued the PCP defects in Par3-deficient cochleae. Thus, a Par3–GEF–Rac axis mediates both tissue-level and hair cell-intrinsic PCP signaling.


Sign in / Sign up

Export Citation Format

Share Document