scholarly journals Aurora B kinase activity is regulated by SET/TAF1 on Sgo2 at the inner centromere

2019 ◽  
Vol 218 (10) ◽  
pp. 3223-3236 ◽  
Author(s):  
Yuichiro Asai ◽  
Koh Fukuchi ◽  
Yuji Tanno ◽  
Saki Koitabashi-Kiyozuka ◽  
Tatsuyuki Kiyozuka ◽  
...  

The accurate regulation of phosphorylation at the kinetochore is essential for establishing chromosome bi-orientation. Phosphorylation of kinetochore proteins by the Aurora B kinase destabilizes improper kinetochore–microtubule attachments, whereas the phosphatase PP2A has a counteracting role. Imbalanced phosphoregulation leads to error-prone chromosome segregation and aneuploidy, a hallmark of cancer cells. However, little is known about the molecular events that control the balance of phosphorylation at the kinetochore. Here, we show that localization of SET/TAF1, an oncogene product, to centromeres maintains Aurora B kinase activity by inhibiting PP2A, thereby correcting erroneous kinetochore–microtubule attachment. SET localizes at the inner centromere by interacting directly with shugoshin 2, with SET levels declining at increased distances between kinetochore pairs, leading to establishment of chromosome bi-orientation. Moreover, SET overexpression induces chromosomal instability by disrupting kinetochore–microtubule attachment. Thus, our findings reveal the novel role of SET in fine-tuning the phosphorylation level at the kinetochore by balancing the activities of Aurora B and PP2A.

2015 ◽  
Vol 26 (12) ◽  
pp. 2227-2241 ◽  
Author(s):  
Travis Karg ◽  
Brandt Warecki ◽  
William Sullivan

To determine how chromosome segregation is coordinated with nuclear envelope formation (NEF), we examined the dynamics of NEF in the presence of lagging acentric chromosomes in Drosophila neuroblasts. Acentric chromosomes often exhibit delayed but ultimately successful segregation and incorporation into daughter nuclei. However, it is unknown whether these late-segregating acentric fragments influence NEF to ensure their inclusion in daughter nuclei. Through live analysis, we show that acentric chromosomes induce highly localized delays in the reassembly of the nuclear envelope. These delays result in a gap in the nuclear envelope that facilitates the inclusion of lagging acentrics into telophase daughter nuclei. Localized delays of nuclear envelope reassembly require Aurora B kinase activity. In cells with reduced Aurora B activity, there is a decrease in the frequency of local nuclear envelope reassembly delays, resulting in an increase in the frequency of acentric-bearing, lamin-coated micronuclei. These studies reveal a novel role of Aurora B in maintaining genomic integrity by promoting the formation of a passageway in the nuclear envelope through which late-segregating acentric chromosomes enter the telophase daughter nucleus.


2010 ◽  
Vol 38 (6) ◽  
pp. 1655-1659 ◽  
Author(s):  
Xavier Fant ◽  
Kumiko Samejima ◽  
Ana Carvalho ◽  
Hiromi Ogawa ◽  
Zhenjie Xu ◽  
...  

The CPC [chromosomal passenger complex; INCENP (inner centromere protein), Aurora B kinase, survivin and borealin] is implicated in many mitotic processes. In the present paper we describe how we generated DT40 conditional-knockout cell lines for incenp1 and survivin1 to better understand the role of these CPC subunits in the control of Aurora B kinase activity. These lines enabled us to reassess current knowledge of survivin function and to show that INCENP acts as a rheostat for Aurora B activity.


2011 ◽  
Vol 193 (6) ◽  
pp. 1049-1064 ◽  
Author(s):  
Robin M. Ricke ◽  
Karthik B. Jeganathan ◽  
Jan M. van Deursen

High expression of the protein kinase Bub1 has been observed in a variety of human tumors and often correlates with poor clinical prognosis, but its molecular and cellular consequences and role in tumorigenesis are unknown. Here, we demonstrate that overexpression of Bub1 in mice leads to near-diploid aneuploidies and tumor formation. We found that chromosome misalignment and lagging are the primary mitotic errors responsible for the observed aneuploidization. High Bub1 levels resulted in aberrant Bub1 kinase activity and hyperactivation of Aurora B kinase. When Aurora B activity is suppressed, pharmacologically or via BubR1 overexpression, chromosome segregation errors caused by Bub1 overexpression are largely corrected. Importantly, Bub1 transgenic mice overexpressing Bub1 developed various kinds of spontaneous tumors and showed accelerated Myc-induced lymphomagenesis. Our results establish that Bub1 has oncogenic properties and suggest that Aurora B is a critical target through which overexpressed Bub1 drives aneuploidization and tumorigenesis.


2003 ◽  
Vol 161 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Alper Romano ◽  
Annika Guse ◽  
Ivica Krascenicova ◽  
Heinke Schnabel ◽  
Ralf Schnabel ◽  
...  

The Aurora B kinase complex is a critical regulator of chromosome segregation and cytokinesis. In Caenorhabditis elegans, AIR-2 (Aurora B) function requires ICP-1 (Incenp) and BIR-1 (Survivin). In various systems, Aurora B binds to orthologues of these proteins. Through genetic analysis, we have identified a new subunit of the Aurora B kinase complex, CSC-1. C. elegans embryos depleted of CSC-1, AIR-2, ICP-1, or BIR-1 have identical phenotypes. CSC-1, BIR-1, and ICP-1 are interdependent for their localization, and all are required for AIR-2 localization. In vitro, CSC-1 binds directly to BIR-1. The CSC-1/BIR-1 complex, but not the individual subunits, associates with ICP-1. CSC-1 associates with ICP-1, BIR-1, and AIR-2 in vivo. ICP-1 dramatically stimulates AIR-2 kinase activity. This activity is not stimulated by CSC-1/BIR-1, suggesting that these two subunits function as targeting subunits for AIR-2 kinase.


2003 ◽  
Vol 14 (8) ◽  
pp. 3325-3341 ◽  
Author(s):  
Reiko Honda ◽  
Roman Körner ◽  
Erich A. Nigg

The function of the Aurora B kinase at centromeres and the central spindle is crucial for chromosome segregation and cytokinesis, respectively. Herein, we have investigated the regulation of human Aurora B by its complex partners inner centromere protein (INCENP) and survivin. We found that overexpression of a catalytically inactive, dominant-negative mutant of Aurora B impaired the localization of the entire Aurora B/INCENP/survivin complex to centromeres and the central spindle and severely disturbed mitotic progression. Similar results were also observed after depletion, by RNA interference, of either Aurora B, INCENP, or survivin. These data suggest that Aurora B kinase activity and the formation of the Aurora B/INCENP/survivin complex both contribute to its proper localization. Using recombinant proteins, we found that Aurora B kinase activity was stimulated by INCENP and that the C-terminal region of INCENP was sufficient for activation. Under identical assay conditions, survivin did not detectably influence kinase activity. Human INCENP was a substrate of Aurora B and mass spectrometry identified three consecutive residues (threonine 893, serine 894, and serine 895) containing at least two phosphorylation sites. A nonphosphorylatable mutant (TSS893–895AAA) was a poor activator of Aurora B, demonstrating that INCENP phosphorylation is important for kinase activation.


2002 ◽  
Vol 13 (9) ◽  
pp. 3064-3077 ◽  
Author(s):  
Margaret A. Bolton ◽  
Weijie Lan ◽  
Shannon E. Powers ◽  
Mark L. McCleland ◽  
Jian Kuang ◽  
...  

Aurora B regulates chromosome segregation and cytokinesis and is the first protein to be implicated as a regulator of bipolar attachment of spindle microtubules to kinetochores. Evidence from several systems suggests that Aurora B is physically associated with inner centromere protein (INCENP) in mitosis and has genetic interactions with Survivin. It is unclear whether the Aurora B and INCENP interaction is cell cycle regulated and if Survivin physically interacts in this complex. In this study, we cloned theXenopus Survivin gene, examined its association with Aurora B and INCENP, and determined the effect of its binding on Aurora B kinase activity. We demonstrate that in the Xenopusearly embryo, all of the detectable Survivin is in a complex with both Aurora B and INCENP throughout the cell cycle. Survivin and Aurora B bind different domains on INCENP. Aurora B activity is stimulated >10-fold in mitotic extracts; this activation is phosphatase sensitive, and the binding of Survivin is required for full Aurora B activity. We also find the hydrodynamic properties of the Aurora B/Survivin/INCENP complex are cell cycle regulated. Our data indicate that Aurora B kinase activity is regulated by both Survivin binding and cell cycle-dependent phosphorylation.


2004 ◽  
Vol 166 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Ulrike Gruneberg ◽  
Rüdiger Neef ◽  
Reiko Honda ◽  
Erich A. Nigg ◽  
Francis A. Barr

Mitotic kinases of the Polo and Aurora families are key regulators of chromosome segregation and cytokinesis. Here, we have investigated the role of MKlp1 and MKlp2, two vertebrate mitotic kinesins essential for cytokinesis, in the spatial regulation of the Aurora B kinase. Previously, we have demonstrated that MKlp2 recruits Polo-like kinase 1 (Plk1) to the central spindle in anaphase. We now find that in MKlp2 but not MKlp1-depleted cells the Aurora B–INCENP complex remains at the centromeres and fails to relocate to the central spindle. MKlp2 exerts dual control over Aurora B localization, because it is a binding partner for Aurora B, and furthermore for the phosphatase Cdc14A. Cdc14A can dephosphorylate INCENP and may contribute to its relocation to the central spindle in anaphase. We propose that MKlp2 is involved in the localization of Plk1, Aurora B, and Cdc14A to the central spindle during anaphase, and that the integration of signaling by these proteins is necessary for proper cytokinesis.


2021 ◽  
Vol 220 (6) ◽  
Author(s):  
Geng-Yuan Chen ◽  
Fioranna Renda ◽  
Huaiying Zhang ◽  
Alper Gokden ◽  
Daniel Z. Wu ◽  
...  

To ensure accurate chromosome segregation, interactions between kinetochores and microtubules are regulated by a combination of mechanics and biochemistry. Tension provides a signal to discriminate attachment errors from bi-oriented kinetochores with sisters correctly attached to opposite spindle poles. Biochemically, Aurora B kinase phosphorylates kinetochores to destabilize interactions with microtubules. To link mechanics and biochemistry, current models regard tension as an input signal to locally regulate Aurora B activity. Here, we show that the outcome of kinetochore phosphorylation depends on tension. Using optogenetics to manipulate Aurora B at individual kinetochores, we find that kinase activity promotes microtubule release when tension is high. Conversely, when tension is low, Aurora B activity promotes depolymerization of kinetochore–microtubules while maintaining attachment. Thus, phosphorylation converts a catch-bond, in which tension stabilizes attachments, to a slip-bond, which releases microtubules under tension. We propose that tension is a signal inducing distinct error-correction pathways, with release or depolymerization being advantageous for typical errors characterized by high or low tension, respectively.


2020 ◽  
Author(s):  
Geng-Yuan Chen ◽  
Fioranna Renda ◽  
Huaiying Zhang ◽  
Alper Gokden ◽  
Daniel Z. Wu ◽  
...  

AbstractAurora B kinase regulates kinetochore-microtubule interactions to ensure accurate chromosome segregation in cell division. Tension provides a signal to discriminate attachment errors from bi-oriented kinetochores with sisters correctly attached to opposite spindle poles. Current models focus on tension as an input to locally regulate Aurora B activity. Here we show that the outcome of Aurora B activity depends on tension. Using an optogenetic approach to manipulate Aurora B at individual kinetochores, we find that kinase activity promotes microtubule release when tension is high. Conversely, when tension is low, Aurora B activity promotes depolymerization of kinetochore-microtubule bundles while maintaining attachment. We propose that tension is a signal inducing distinct error-correction mechanisms, with release or depolymerization advantageous for typical errors characterized by high or low tension, respectively.


Sign in / Sign up

Export Citation Format

Share Document