scholarly journals Mechanosensing during directed cell migration requires dynamic actin polymerization at focal adhesions

2019 ◽  
Vol 218 (12) ◽  
pp. 4215-4235 ◽  
Author(s):  
Julieann I. Puleo ◽  
Sara S. Parker ◽  
Mackenzie R. Roman ◽  
Adam W. Watson ◽  
Kiarash Rahmani Eliato ◽  
...  

The mechanical properties of a cell’s microenvironment influence many aspects of cellular behavior, including cell migration. Durotaxis, the migration toward increasing matrix stiffness, has been implicated in processes ranging from development to cancer. During durotaxis, mechanical stimulation by matrix rigidity leads to directed migration. Studies suggest that cells sense mechanical stimuli, or mechanosense, through the acto-myosin cytoskeleton at focal adhesions (FAs); however, FA actin cytoskeletal remodeling and its role in mechanosensing are not fully understood. Here, we show that the Ena/VASP family member, Ena/VASP-like (EVL), polymerizes actin at FAs, which promotes cell-matrix adhesion and mechanosensing. Importantly, we show that EVL regulates mechanically directed motility, and that suppression of EVL expression impedes 3D durotactic invasion. We propose a model in which EVL-mediated actin polymerization at FAs promotes mechanosensing and durotaxis by maturing, and thus reinforcing, FAs. These findings establish dynamic FA actin polymerization as a central aspect of mechanosensing and identify EVL as a crucial regulator of this process.

1999 ◽  
Vol 248 (2) ◽  
pp. 531-537 ◽  
Author(s):  
Bianca S. Verbeek ◽  
Thea M. Vroom ◽  
Gert Rijksen

1999 ◽  
Vol 112 (18) ◽  
pp. 3081-3090 ◽  
Author(s):  
S. Hiscox ◽  
W.G. Jiang

Ezrin, radixin, moesin and merlin form a subfamily of conserved proteins in the band 4.1 superfamily. The function of these proteins is to link the plasma membrane to the actin cytoskeleton. Merlin is defective or absent in schwannomas and meningiomas and has been suggested to function as a tumour suppressor. In this study, we have examined the role of ezrin as a potential regulator of the adhesive and invasive behaviour of tumour cells. We have shown that following inhibition of ezrin expression in colo-rectal cancer cells using antisense oligonucleotides, these cells displayed a reduced cell-cell adhesiveness together with a gain in their motile and invasive behaviour. These cells also displayed increased spreading over matrix-coated surfaces. Immunofluorescence studies revealed that antisense-treated cells also displayed an increased staining of paxillin in areas representing focal adhesions. Furthermore, coprecipitation studies revealed an association of ezrin with E-cadherin and beta-catenin. Induction of the phosphorylation of ezrin by orthovanadate and hepatocyte growth factor/scatter factor resulted in changes similar to those seen with antisense treatment, together with a marked decrease in the association of ezrin with both beta-catenin and E-cadherin. It is concluded that ezrin regulates cell-cell and cell-matrix adhesion, by interacting with cell adhesion molecules E-cadherin and beta-catenin, and may thus play an important role in the control of adhesion and invasiveness of cancer cells.


2007 ◽  
Vol 18 (10) ◽  
pp. 3860-3872 ◽  
Author(s):  
Justin G. Peacock ◽  
Ann L. Miller ◽  
William D. Bradley ◽  
Olga C. Rodriguez ◽  
Donna J. Webb ◽  
...  

In migrating cells, actin polymerization promotes protrusion of the leading edge, whereas actomyosin contractility powers net cell body translocation. Although they promote F-actin–dependent protrusions of the cell periphery upon adhesion to fibronectin (FN), Abl family kinases inhibit cell migration on FN. We provide evidence here that the Abl-related gene (Arg/Abl2) kinase inhibits fibroblast migration by attenuating actomyosin contractility and regulating focal adhesion dynamics. arg−/− fibroblasts migrate at faster average speeds than wild-type (wt) cells, whereas Arg re-expression in these cells slows migration. Surprisingly, the faster migrating arg−/− fibroblasts have more prominent F-actin stress fibers and focal adhesions and exhibit increased actomyosin contractility relative to wt cells. Interestingly, Arg requires distinct functional domains to inhibit focal adhesions and actomyosin contractility. The kinase domain–containing Arg N-terminal half can act through the RhoA inhibitor p190RhoGAP to attenuate stress fiber formation and cell contractility. However, Arg requires both its kinase activity and its cytoskeleton-binding C-terminal half to fully inhibit focal adhesions. Although focal adhesions do not turn over efficiently in the trailing edge of arg−/− cells, the increased contractility of arg−/− cells tears the adhesions from the substrate, allowing for the faster migration observed in these cells. Together, our data strongly suggest that Arg inhibits cell migration by restricting actomyosin contractility and regulating its coupling to the substrate through focal adhesions.


2008 ◽  
Vol 19 (8) ◽  
pp. 3180-3191 ◽  
Author(s):  
Kate M. Cooper ◽  
David A. Bennin ◽  
Anna Huttenlocher

Pombe Cdc15 homology (PCH) family members have emerged as important regulators of membrane–cytoskeletal interactions. Here we show that PSTPIP1, a PCH family member expressed in hematopoietic cells, regulates the motility of neutrophil-like cells and is a novel component of the leukocyte uropod where it colocalizes with other uropod components, such as type I PIPKIγ. Furthermore, we show that PSTPIP1 association with the regulator of endocytosis, dynamin 2, and PSTPIP1 expression impairs transferrin uptake and endocytosis. We also show that PSTPIP1 localizes at the rear of neutrophils with a subpopulation of F-actin that is specifically detected by the binding of an F-actin probe that detects a more stable population of actin. Finally, we show that actin polymerization, but not the microtubule network, is necessary for the polarized distribution of PSTPIP1 toward the rear of the cell. Together, our findings demonstrate that PSTPIP1 is a novel component of the leukocyte uropod that regulates endocytosis and cell migration.


2004 ◽  
Vol 32 (3) ◽  
pp. 416-420 ◽  
Author(s):  
R. Zaidel-Bar ◽  
M. Cohen ◽  
L. Addadi ◽  
B. Geiger

The adhesion of cells to the extracellular matrix is a dynamic process, mediated by a series of cell-surface and matrix-associated molecules that interact with each other in a spatially and temporally regulated manner. These interactions play a major role in tissue formation, cellular migration and the induction of adhesion-mediated transmembrane signals. In this paper, we show that the formation of matrix adhesions is a hierarchical process, consisting of several sequential molecular events. One of the earliest steps in surface recognition is mediated, in some cells, by a 1 μm-thick cell-surface hyaluronan coat, which precedes the establishment of stable, cytoskeleton-associated adhesions. The earliest forms of these integrin-mediated contacts are dot-shaped FXs (focal complexes), which are formed under the protrusive lamellipodium of migrating cells. These adhesions recruit, sequentially, different anchor proteins that are involved in binding the actin cytoskeleton to the membrane. Conspicuous in its absence from FXs is zyxin, which is recruited to these sites only on retraction of the leading edge and the transformation of the FXs into a focal adhesion. Continuing application of force to focal adhesions results in the formation of fibrillar adhesions and reorganization of the extracellular matrix. The formation of these adhesions depends on actomyosin contractility and matrix pliability.


2007 ◽  
Vol 179 (7) ◽  
pp. 1583-1597 ◽  
Author(s):  
Klodiana Jani ◽  
Frieder Schöck

The integrin family of heterodimeric transmembrane receptors mediates cell–matrix adhesion. Integrins often localize in highly organized structures, such as focal adhesions in tissue culture and myotendinous junctions in muscles. Our RNA interference screen for genes that prevent integrin-dependent cell spreading identifies Z band alternatively spliced PDZ-motif protein (zasp), encoding the only known Drosophila melanogaster Alp/Enigma PDZ-LIM domain protein. Zasp localizes to integrin adhesion sites and its depletion disrupts integrin adhesion sites. In tissues, Zasp colocalizes with βPS integrin in myotendinous junctions and with α-actinin in muscle Z lines. Zasp also physically interacts with α-actinin. Fly larvae lacking Zasp do not form Z lines and fail to recruit α-actinin to the Z line. At the myotendinous junction, muscles detach in zasp mutants with the onset of contractility. Finally, Zasp interacts genetically with integrins, showing that it regulates integrin function. Our observations point to an important function for Zasp in the assembly of integrin adhesion sites both in cell culture and in tissues.


2008 ◽  
Vol 18 (1) ◽  
pp. 65-76 ◽  
Author(s):  
John G. Lock ◽  
Bernhard Wehrle-Haller ◽  
Staffan Strömblad

Sign in / Sign up

Export Citation Format

Share Document