myotendinous junctions
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 7)

H-INDEX

18
(FIVE YEARS 1)

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1547
Author(s):  
Mladen Japjec ◽  
Katarina Horvat Pavlov ◽  
Andreja Petrovic ◽  
Mario Staresinic ◽  
Bozidar Sebecic ◽  
...  

(1) Aim: The stable gastric pentadecapeptide BPC 157 is known to heal transected muscle, tendon, and ligament. Thereby, in this study, we investigated the effect of BPC 157 on the dissection of the quadriceps tendon from the quadriceps muscle in rats. (2) Materials and Methods: Myotendinous junction defect, which cannot heal spontaneously in rats, as evidenced with consistent macro/microscopic, biomechanical, functional assessments, eNOS, and COX-2 mRNA levels and oxidative stress and NO-levels in the myotendinous junctions. BPC 157 (10 µg/kg, 10 ng/kg) regimen was given (i) intraperitoneally, first application immediately after surgery, last 24 h before sacrifice; (ii) per-orally, in drinking water (0.16 µg/mL, 0.16 ng/mL, 12 mL/rat/day), till the sacrifice at 7, 14, 28 and 42 postoperative days. (3) Results: These BPC 157 regimens document prominent therapy effects (macro/microscopic, biomechanical, functional much like eNOS and COX-2 mRNA levels and counteracted oxidative stress and NO-levels in the myotendinous junctions), while controls have a poor presentation. Especially, in rats with the disabled myotendinous junction, along with full functional recovery, BPC 157 counteracts muscle atrophy that is regularly progressive and brings muscle presentation close to normal. Accordingly, unlike the perilous course in controls, those rats, when receiving BPC 157 therapy, exhibit a smaller defect, and finally defects completely disappear. Microscopically, there are no more inflammatory infiltrate, well-oriented recovered tissue of musculotendon junction appears in BPC 157 treated rats at the 28 days and 42 days. (4) Conclusions: BPC 157 restores myotendinous junction in accordance with the healing of the transected muscle, tendon, and ligament.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Welcker ◽  
Cornelia Stein ◽  
Natalia Martins Feitosa ◽  
Joy Armistead ◽  
Jin-Li Zhang ◽  
...  

AbstractThe extracellular matrix architecture is composed of supramolecular fibrillar networks that define tissue specific cellular microenvironments. Hemicentins (Hmcn1 and Hmcn2) are ancient and very large members (> 600 kDa) of the fibulin family, whose short members are known to guide proper morphology and functional behavior of specialized cell types predominantly in elastic tissues. However, the tissue distribution and function of Hemicentins within the cellular microenvironment of connective tissues has remained largely unknown. Performing in situ hybridization and immunofluorescence analyses, we found that mouse Hmcn1 and Hmcn2 show a complementary distribution throughout different tissues and developmental stages. In postnatal dermal–epidermal junctions (DEJ) and myotendinous junctions (MTJ), Hmcn1 is primarily produced by mesenchymal cells (fibroblasts, tenocytes), Hmcn2 by cells of epithelial origin (keratinocytes, myocytes). Hmcn1−/− mice are viable and show no overt phenotypes in tissue tensile strength and locomotion tests. However, transmission electron microscopy revealed ultrastructural basement membrane (BM) alterations at the DEJ and MTJ of Hmcn1−/− mice, pointing to a thus far unknown role of Hmcn1 for BM and connective tissue boundary integrity.


2021 ◽  
Author(s):  
Daniela Welcker ◽  
Cornelia Stein ◽  
Natalia Martins Feitosa ◽  
Joy Armistead ◽  
Jin-Li Zhang ◽  
...  

Abstract The extracellular matrix (ECM) architecture is composed of supramolecular fibrillar networks that define tissue specific cellular microenvironments. Hemicentins (Hmcn1 and Hmcn2) are ancient and very large members (>600 kDa) of the fibulin family, whose short members are known to guide proper morphology and functional behavior of specialized cell types predominantly in elastic tissues. However, the tissue distribution and function of Hemicentins within the cellular microenvironment of connective tissues has remained largely unknown. Performing in situ hybridization and immunofluorescence analyses, we found that Hmcn1 and Hmcn2 show a complementary distribution throughout different tissues and developmental stages. In postnatal dermal-epidermal junctions (DEJ) and myotendinous junctions (MTJ), Hmcn1 is primarily produced by mesenchymal cells (fibroblasts, tenocytes), Hmcn2 by cells of epithelial origin (keratinocytes, myocytes). Hmcn1-/-mice are viable and show no overt phenotypes in tissue tensile strength and locomotion tests. However, transmission electron microscopy revealed ultrastructural basement membrane (BM) alterations at the DEJ and MTJ of Hmcn1-/-mice, pointing to a thus far unknown role of Hmcn1 for BM and connective tissue boundary integrity.


Author(s):  
Alberto Sensini ◽  
Gabriele Massafra ◽  
Carlo Gotti ◽  
Andrea Zucchelli ◽  
Luca Cristofolini

The musculoskeletal system is composed by hard and soft tissue. These tissues are characterized by a wide range of mechanical properties that cause a progressive transition from one to the other. These material gradients are mandatory to reduce stress concentrations at the junction site. Nature has answered to this topic developing optimized interfaces, which enable a physiological transmission of load in a wide area over the junction. The interfaces connecting tendons and ligaments to bones are called entheses, while the ones between tendons and muscles are named myotendinous junctions. Several injuries can affect muscles, bones, tendons, or ligaments, and they often occur at the junction sites. For this reason, the main aim of the innovative field of the interfacial tissue engineering is to produce scaffolds with biomaterial gradients and mechanical properties to guide the cell growth and differentiation. Among the several strategies explored to mimic these tissues, the electrospinning technique is one of the most promising, allowing to generate polymeric nanofibers similar to the musculoskeletal extracellular matrix. Thanks to its extreme versatility, electrospinning has allowed the production of sophisticated scaffolds suitable for the regeneration of both the entheses and the myotendinous junctions. The aim of this review is to analyze the most relevant studies that applied electrospinning to produce scaffolds for the regeneration of the enthesis and the myotendinous junction, giving a comprehensive overview on the progress made in the field, in particular focusing on the electrospinning strategies to produce these scaffolds and their mechanical, in vitro, and in vivo outcomes.


Author(s):  
Jens R. Jakobsen ◽  
Niels R. Jakobsen ◽  
Abigail L. Mackey ◽  
Andreas B. Knudsen ◽  
Jens Hannibal ◽  
...  

2020 ◽  
Vol 45 (7) ◽  
pp. 745-752 ◽  
Author(s):  
Dustin J. Oranchuk ◽  
Matt S. Stock ◽  
André R. Nelson ◽  
Adam G. Storey ◽  
John B. Cronin

Quantifying echo intensity (EI), a proposed measure of muscle quality, is becoming increasingly popular. Additionally, much attention has been paid to regional differences in other ultrasonically evaluated measures of muscle morphology and architecture. However, the variability of regional (proximal, middle, distal) EI of the vastus lateralis, rectus femoris, and lateral and anterior vastus intermedius has yet to be determined. Twenty participants (40 limbs), were evaluated on 3 occasions, separated by 7 days. Intersession variability of EI with and without subcutaneous fat correction was quantified. Furthermore, the interchangeability of corrected EI across regions was evaluated. Variability of regional quadriceps EI was substantially lower with subcutaneous fat correction (intraclass correlation coefficient (ICC) = 0.81–0.98, coefficient of variation (CV) = 4.5%–16.8%, typical error of measure (TEM) = 0.13–0.49) versus raw values (ICC = 0.69–0.98, CV = 7.7%–42.7%, TEM = 0.14–0.68), especially when examining the vastus intermedius (ICC = 0.81–0.95, CV = 7.1%–16.8%, TEM = 0.23–0.49 vs. ICC = 0.69–0.92, CV = 22.9%–42.7%, TEM = 0.31–0.68). With the exception of the rectus femoris and vastus intermedius (p ≥ 0.143, effect size (ES) ≤ 0.18), corrected EI was greater for proximal and distal regions when compared with the midpoint (p ≤ 0.038, ES = 0.38–0.82). Researchers and practitioners should utilize subcutaneous fat thickness correction to confidently evaluate EI at all regions of the quadriceps. Regional EI cannot be used interchangeably for the vastus muscles, likely because of an increase in fibrous content towards the myotendinous junctions. Novelty Regional quadriceps echo intensity was reliable with and without correction for subcutaneous fat thickness. Intersession variability of regional quadriceps echo intensity was substantially improved following subcutaneous fat correction. Quadriceps echo intensity increased towards myotendinous junctions in the vastus muscles.


2015 ◽  
Vol 35 (6) ◽  
pp. 575-581 ◽  
Author(s):  
Gerald F. Reis ◽  
Grant de la Motte ◽  
Rebecca Gooding ◽  
Nigel G. Laing ◽  
Marta Margeta

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Arul Subramanian ◽  
Thomas F Schilling

Tendons are extracellular matrix (ECM)-rich structures that mediate muscle attachments with the skeleton, but surprisingly little is known about molecular mechanisms of attachment. Individual myofibers and tenocytes in Drosophila interact through integrin (Itg) ligands such as Thrombospondin (Tsp), while vertebrate muscles attach to complex ECM fibrils embedded with tenocytes. We show for the first time that a vertebrate thrombospondin, Tsp4b, is essential for muscle attachment and ECM assembly at myotendinous junctions (MTJs). Tsp4b depletion in zebrafish causes muscle detachment upon contraction due to defects in laminin localization and reduced Itg signaling at MTJs. Mutation of its oligomerization domain renders Tsp4b unable to rescue these defects, demonstrating that pentamerization is required for ECM assembly. Furthermore, injected human TSP4 localizes to zebrafish MTJs and rescues muscle detachment and ECM assembly in Tsp4b-deficient embryos. Thus Tsp4 functions as an ECM scaffold at MTJs, with potential therapeutic uses in tendon strengthening and repair.


Sign in / Sign up

Export Citation Format

Share Document