scholarly journals A selective transmembrane recognition mechanism by a membrane-anchored ubiquitin ligase adaptor

2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Felichi Mae Arines ◽  
Aaron Jeremy Hamlin ◽  
Xi Yang ◽  
Yun-Yu Jennifer Liu ◽  
Ming Li

While it is well-known that E3 ubiquitin ligases can selectively ubiquitinate membrane proteins in response to specific environmental cues, the underlying mechanisms for the selectivity are poorly understood. In particular, the role of transmembrane regions, if any, in target recognition remains an open question. Here, we describe how Ssh4, a yeast E3 ligase adaptor, recognizes the PQ-loop lysine transporter Ypq1 only after lysine starvation. We show evidence of an interaction between two transmembrane helices of Ypq1 (TM5 and TM7) and the single transmembrane helix of Ssh4. This interaction is regulated by the conserved PQ motif. Strikingly, recent structural studies of the PQ-loop family have suggested that TM5 and TM7 undergo major conformational changes during substrate transport, implying that transport-associated conformational changes may determine the selectivity. These findings thus provide critical information concerning the regulatory mechanism through which transmembrane domains can be specifically recognized in response to changing environmental conditions.

2009 ◽  
Vol 22 (4) ◽  
pp. 307-318 ◽  
Author(s):  
Vsevolod Katritch ◽  
Kimberly A. Reynolds ◽  
Vadim Cherezov ◽  
Michael A. Hanson ◽  
Christopher B. Roth ◽  
...  

2017 ◽  
Vol 398 (4) ◽  
pp. 441-453 ◽  
Author(s):  
Dieter Langosch ◽  
Harald Steiner

Abstract Intramembrane proteases comprise a number of different membrane proteins with different types of catalytic sites. Their common denominator is cleavage within the plane of the membrane, which usually results in peptide bond scission within the transmembrane helices of their substrates. Despite recent progress in the determination of high-resolution structures, as illustrated here for the γ-secretase complex and its substrate C99, it is still unknown how these enzymes function and how they distinguish between substrates and non-substrates. In principle, substrate/non-substrate discrimination could occur at the level of substrate binding and/or cleavage. Focusing on the γ-secretase/C99 pair, we will discuss recent observations suggesting that global motions within a substrate transmembrane helix may be much more important for defining a substrate than local unraveling at cleavage sites.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ian Winfield ◽  
Kerry Barkan ◽  
Sarah Routledge ◽  
Nathan J. Robertson ◽  
Matthew Harris ◽  
...  

The first intracellular loop (ICL1) of G protein-coupled receptors (GPCRs) has received little attention, although there is evidence that, with the 8th helix (H8), it is involved in early conformational changes following receptor activation as well as contacting the G protein β subunit. In class B1 GPCRs, the distal part of ICL1 contains a conserved R12.48KLRCxR2.46b motif that extends into the base of the second transmembrane helix; this is weakly conserved as a [R/H]12.48KL[R/H] motif in class A GPCRs. In the current study, the role of ICL1 and H8 in signaling through cAMP, iCa2+ and ERK1/2 has been examined in two class B1 GPCRs, using mutagenesis and molecular dynamics. Mutations throughout ICL1 can either enhance or disrupt cAMP production by CGRP at the CGRP receptor. Alanine mutagenesis identified subtle differences with regard elevation of iCa2+, with the distal end of the loop being particularly sensitive. ERK1/2 activation displayed little sensitivity to ICL1 mutation. A broadly similar pattern was observed with the glucagon receptor, although there were differences in significance of individual residues. Extending the study revealed that at the CRF1 receptor, an insertion in ICL1 switched signaling bias between iCa2+ and cAMP. Molecular dynamics suggested that changes in ICL1 altered the conformation of ICL2 and the H8/TM7 junction (ICL4). For H8, alanine mutagenesis showed the importance of E3908.49b for all three signal transduction pathways, for the CGRP receptor, but mutations of other residues largely just altered ERK1/2 activation. Thus, ICL1 may modulate GPCR bias via interactions with ICL2, ICL4 and the Gβ subunit.


2002 ◽  
Vol 30 (2) ◽  
pp. 323-327 ◽  
Author(s):  
M. V. Mikhailov ◽  
E. A. Mikhailova ◽  
S. J. H. Ashcroft

The ATP-sensitive potassium (KATP) channel plays a key role in controlling β-cell membrane potential and insulin secretion. The channels are composed of two subunits, Kir6.2, which forms the channel pore, and SUR1, which contains binding sites for nucleotides and sulphonylureas and acts as a channel regulator. Our current studies are aimed at delineating the molecular interactions involved in assembly and ligand binding by KATP channel proteins. We have employed a complementation approach in which SUR1 half-molecules are co-expressed in insect cells using a baculovirus system. Together with data from truncated SUR1 molecules and a fusion protein in which SUR1 is linked to Kir6.2, we have interpreted our findings in terms of a model for the structure of the KATP channel. The main features of the model are: (i) the C-terminal end of SUR1 is close to the N-terminus of Kir6.2; (ii) the two nucleotide binding domains (NBDs) of SUR1 -NBD1 and NBD2 - are in proximity; (iii) transmembrane helix 12 of SUR1 is orientated in such a way that it can make contact with Kir6.2; (iv) formation of the glibenclamide binding site requires that the two cytosolic loops (CLs) CL3 and CL8 are located close to each other; (v) there are homomeric interactions between the NBD1 domains of neighbouring subunits. We suggest that binding of glibenclamide leads to conformational changes in CL3 and CL8 leading to rearrangement of transmembrane helices. These effects are transmitted to Kir6.2 to result in channel closure.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247394
Author(s):  
Oleksi Petrenko ◽  
Jinyu Li ◽  
Velasco Cimica ◽  
Patricio Mena-Taboada ◽  
Ha Youn Shin ◽  
...  

The inflammatory cytokine IL-6 is known to play a causal role in the promotion of cancer, although the underlying mechanisms remain to be completely understood. Interplay between endogenous and environmental cues determines the fate of cancer development. The Eμ-myc transgenic mouse expresses elevated levels of c-Myc in the B cell lineage and develops B cell lymphomas with associated mutations in p53 or other genes linked to apoptosis. We generated Eμ-myc mice that either lacked the IL-6 gene, or lacked the STAT3 gene specifically in B cells to determine the role of the IL-6/JAK/STAT3 pathway in tumor development. Using the Eμ-myc lymphoma mouse model, we demonstrate that IL-6 is a critical tumor promoter during early stages of B cell lymphomagenesis. IL-6 is shown to inhibit the expression of tumor suppressors, notably BIM and PTEN, and this may contribute to advancing MYC-driven B cell tumorigenesis. Several miRNAs known to target BIM and PTEN are upregulated by IL-6 and likely lead to the stable suppression of pro-apoptotic pathways early during the tumorigenic process. STAT3, a classical downstream effector of IL-6, appears dispensable for Eμ-myc driven lymphomagenesis. We conclude that the growth-promoting and anti-apoptotic mechanisms activated by IL-6 are critically involved in Eμ-myc driven tumor initiation and progression, but the B cell intrinsic expression of STAT3 is not required.


2021 ◽  
Author(s):  
Jiemin Shen ◽  
Gang Wu ◽  
Ah-Lim Tsai ◽  
Ming Zhou

Mammalian cytochrome b5 (cyt b5) and cytochrome b5 reductase (b5R) are electron carrier proteins required for many membrane-embedded oxidoreductases. Both cyt b5 and b5R have a cytosolic domain anchored to the membrane by a single transmembrane helix (TM). It is not clear if b5R, cyt b5 and their partner oxidoreductases assemble as binary or ternary complexes. Here we show that b5R and cyt b5 form a stable binary complex, and that b5R, cyt b5 and a membrane-embedded oxidoreductase, stearoyl-CoA desaturase 1 (SCD1) form a stable ternary complex. The formation of the complexes significantly enhances electron transfer rates, and that the single TM of cyt b5 and b5R mediated assembly of the complexes. These results reveal a novel functional role of TMs in cyt b5 and b5R and suggest that an electron transport chain composed of a stable ternary complex may be a general feature in oxidoreductases that require the participation of cyt b5 and b5R.


Author(s):  
Hideo Hayashi ◽  
Yoshikazu Hirai ◽  
John T. Penniston

Spectrin is a membrane associated protein most of which properties have been tentatively elucidated. A main role of the protein has been assumed to give a supporting structure to inside of the membrane. As reported previously, however, the isolated spectrin molecule underwent self assemble to form such as fibrous, meshwork, dispersed or aggregated arrangements depending upon the buffer suspended and was suggested to play an active role in the membrane conformational changes. In this study, the role of spectrin and actin was examined in terms of the molecular arrangements on the erythrocyte membrane surface with correlation to the functional states of the ghosts.Human erythrocyte ghosts were prepared from either freshly drawn or stocked bank blood by the method of Dodge et al with a slight modification as described before. Anti-spectrin antibody was raised against rabbit by injection of purified spectrin and partially purified.


2008 ◽  
Vol 24 (4) ◽  
pp. 218-225 ◽  
Author(s):  
Bertram Gawronski ◽  
Roland Deutsch ◽  
Etienne P. LeBel ◽  
Kurt R. Peters

Over the last decade, implicit measures of mental associations (e.g., Implicit Association Test, sequential priming) have become increasingly popular in many areas of psychological research. Even though successful applications provide preliminary support for the validity of these measures, their underlying mechanisms are still controversial. The present article addresses the role of a particular mechanism that is hypothesized to mediate the influence of activated associations on task performance in many implicit measures: response interference (RI). Based on a review of relevant evidence, we argue that RI effects in implicit measures depend on participants’ attention to association-relevant stimulus features, which in turn can influence the reliability and the construct validity of these measures. Drawing on a moderated-mediation model (MMM) of task performance in RI paradigms, we provide several suggestions on how to address these problems in research using implicit measures.


2015 ◽  
Vol 27 (4) ◽  
pp. 159-169 ◽  
Author(s):  
Elsbeth D. Asbeek Brusse ◽  
Marieke L. Fransen ◽  
Edith G. Smit

Abstract. This study examined the effects of disclosure messages in entertainment-education (E-E) on attitudes toward hearing protection and attitude toward the source. In addition, the (mediating) role of the underlying mechanisms (i.e., transportation, identification, and counterarguing) was studied. In an experiment (N = 336), three different disclosure messages were compared with a no-disclosure condition. The results show that more explicit disclosure messages negatively affect transportation and identification and stimulate the generation of counterarguments. In addition, the more explicit disclosure messages affect both attitude measures via two of these processes (i.e., transportation and counterarguing). Less explicit disclosure messages do not have this effect. Implications of the findings are discussed.


2020 ◽  
Vol 27 (6) ◽  
pp. 955-982 ◽  
Author(s):  
Kyoung Sang Cho ◽  
Jang Ho Lee ◽  
Jeiwon Cho ◽  
Guang-Ho Cha ◽  
Gyun Jee Song

Background: Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders. Objective: The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation. Methods: We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions. Results: Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders. Conclusion: Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.


Sign in / Sign up

Export Citation Format

Share Document