scholarly journals Tissue-wide coordination of epithelium-to-neural stem cell transition in the Drosophila optic lobe requires Neuralized

2020 ◽  
Vol 219 (11) ◽  
Author(s):  
Chloé Shard ◽  
Juan Luna-Escalante ◽  
François Schweisguth

Many tissues are produced by specialized progenitor cells emanating from epithelia via epithelial-to-mesenchymal transition (EMT). Most studies have so far focused on EMT involving single or isolated groups of cells. Here we describe an EMT-like process that requires tissue-level coordination. This EMT-like process occurs along a continuous front in the Drosophila optic lobe neuroepithelium to produce neural stem cells (NSCs). We find that emerging NSCs remain epithelial and apically constrict before dividing asymmetrically to produce neurons. Apical constriction is associated with contractile myosin pulses and involves RhoGEF3 and down-regulation of the Crumbs complex by the E3 ubiquitin ligase Neuralized. Anisotropy in Crumbs complex levels also results in accumulation of junctional myosin. Disrupting the regulation of Crumbs by Neuralized lowered junctional myosin and led to imprecision in the integration of emerging NSCs into the front. Thus, Neuralized promotes smooth progression of the differentiation front by coupling epithelium remodeling at the tissue level with NSC fate acquisition.

2020 ◽  
Author(s):  
Chloé Shard ◽  
Juan Luna-Escalante ◽  
François Schweisguth

AbstractMany tissues are produced during development by specialized progenitor cells emanating from epithelia via an Epithelial-to-Mesenchymal Transition (EMT). Most studies have so far focused on cases involving single or isolated groups of cells. Here we describe an EMT-like process that requires tissue level coordination. This EMT-like process occurs along a continuous front in the Drosophila optic lobe neuroepithelium to produce neural stem cells (NSCs). We find that emerging NSCs remain epithelial and apically constrict before dividing asymmetrically to produce neurons. Apical constriction is associated with contractile myosin pulses and requires the E3 ubiquitin ligase Neuralized and RhoGEF3. Neuralized down-regulates the apical protein Crumbs via its interaction with Stardust. Disrupting the regulation of Crumbs by Neuralized led to defects in apical constriction and junctional myosin accumulation, and to imprecision in the integration of emerging NSCs into the transition front. Neuralized therefore appears to mechanically couple NSC fate acquisition with cell-cell rearrangement to promote smooth progression of the differentiation front.


2020 ◽  
Vol 219 (11) ◽  
Author(s):  
Arnaud Ambrosini ◽  
Katja Röper

In the Drosophila larval optic lobe, the generation of neural stem cells involves an epithelial-to-mesenchymal–like transition of a continuous stripe of cells that sweeps across the neuroepithelium, but the dynamics at cell and tissue level were unknown until now. In this issue, Shard et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202005035) identify that Neuralized controls a partial epithelial-to-mesenchymal transition through regulation of the apical Crumbs complex and through the coordination of cell behaviors such as apical constriction and cell alignment.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1340 ◽  
Author(s):  
Olaia Martinez-Iglesias ◽  
Alba Casas-Pais ◽  
Raquel Castosa ◽  
Andrea Díaz-Díaz ◽  
Daniel Roca-Lema ◽  
...  

The requirement of the E3 ubiquitin-ligase Hakai for the ubiquitination and subsequent degradation of E-cadherin has been associated with enhanced epithelial-to-mesenchymal transition (EMT), tumour progression and carcinoma metastasis. To date, most of the reported EMT-related inhibitors were not developed for anti-EMT purposes, but indirectly affect EMT. On the other hand, E3 ubiquitin-ligase enzymes have recently emerged as promising therapeutic targets, as their specific inhibition would prevent wider side effects. Given this background, a virtual screening was performed to identify novel specific inhibitors of Hakai, targeted against its phosphotyrosine-binding pocket, where phosphorylated-E-cadherin specifically binds. We selected a candidate inhibitor, Hakin-1, which showed an important effect on Hakai-induced ubiquitination. Hakin-1 also inhibited carcinoma growth and tumour progression both in vitro, in colorectal cancer cell lines, and in vivo, in a tumour xenograft mouse model, without apparent systemic toxicity in mice. Our results show for the first time that a small molecule putatively targeting the E3 ubiquitin-ligase Hakai inhibits Hakai-dependent ubiquitination of E-cadherin, having an impact on the EMT process. This represents an important step forward in a future development of an effective therapeutic drug to prevent or inhibit carcinoma tumour progression.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii9-ii9
Author(s):  
Tamara Lah Turnsek ◽  
Barbara Breznik ◽  
Bernarda Majc ◽  
Metka Novak ◽  
Andrej Porčnik ◽  
...  

Abstract Epithelial-to-mesenchymal transition (EMT) is an essential molecular and cellular process in physiologic processes and invasion of various types of carcinoma and glioblastoma (GBM) cells. EMT is activated and regulated by specific endogenous triggers in complex network of intercellular interactions and signaling pathways. The hallmark of cancer-linked EMT are intermediate states that show notable cell plasticity, characteristic of cancer stem cells (CSCs), including glioblastoma stem cells – GSCs. GSCs resistance to irradiation (IR) and temozolomide (TMZ) chemotherapy is responsible for early relapses, even at distant brain sites. As GSCs are mostly homing to their “niches” as slowly-dividing GSC-subtype, mimicking a proneural-like non- invasive phenotype PN-genotype, we assume that this, by undergoing an EMT-like transition, GSCs are-reprogrammed to an invasive mesenchymal (MES) GBs/GSCs phenotype in a processes, called PMT (1). However, it is not known, if and by which environmental cues within the niche, this transition of GSCs is induced in vivo. In this work, we are presenting the transriptome data obtained when we exposed GSC spheroids to irradiation alone, TMZ alone and to the combined treatment in vitro and compared their differential genetic fingerprints related to EMT/PMT transition to the GSCs PMT transition, when embedded in their natural microenvironment in the GBM organoid model. The differential gene expression upon GSCs therapeutic perturbation (when alone and vs in the tumoroid microenvironment) will reveal the effects of the major candidate genes, associated with micronevironmendt stromal cells and matrix are contributing their observed EMT/PMT transition of GSCs in vivo. •1. Majc, B., Sever, T., Zarić, M, Breznik, B., Turk, B, Lah Turnšek, T. Epithelial- to-mesenchymal transition as the driver of changing carcinoma and glioblastoma microenvironment. DOI: 10.1016/j.bbamcr.2020.118782


Sign in / Sign up

Export Citation Format

Share Document