scholarly journals Compositional studies of myofibrils from rabbit striated muscle.

1976 ◽  
Vol 68 (1) ◽  
pp. 123-141 ◽  
Author(s):  
J D Etlinger ◽  
R Zak ◽  
D A Fischman

The localization of high-molecular-weight (80,000-200,000-daltons) proteins in the sarcomere of striated muscle has been studied by coordinated electron-microscopic and sodium dodecyl sulfate (SDS) gel electrophoretic analysis of native myofilaments and extracted and digested myofibrils. Methods were developed for the isolation of thick and thin filaments and of uncontracted myofibrils which are devoid of endoproteases and membrane fragments. Treatment of crude myofibrils with 0.5% Triton X-100 results in the release of a 110,000-dalton component without affecting the myofibrillar structure. Extraction of uncontracted myofibrils with a relaxing solution of high ionic strength results in the complete disappearance of the A band and M line. In this extract, five other protein bands in addition to myosin are resolved on SDS gels: bands M 1 (190,000 daltons) and M 2 (170,000 daltons), which are suggested to be components of the M line; M 3 (150,000 daltons), a degradation product; and a doublet M 4, M 5 (140,000 daltons), thick-filament protein having the same mobility as C protein. Extraction of myofibrils with 0.15% deoxycholate, previously shown to remove Z-line density, releases a doublet Z 1, Z 2 (90,000 daltons) with the same mobility as alpha-actinin, as well as proteins of 60,000 daltons and less, and small amounts of M 1, M 2, M 4, and M 5; these proteins were not extracted with 0.5% Triton X-100. The C, M-line, and Z-line proteins and/or their binding to myofibrils are very sensitive to tryptic digestion, whereas the M 3 (150,000 daltons) component and an additional band at 110,000 daltons are products of proteolysis. Gentle treatment of myofibrils with an ATP relaxing solution results in the release of thick and thin myofilaments which can be pelleted by 100,000-g centrifugation. These myofilaments lack M-and Z-line structure when examined with the electron microscope, and their electrophoretograms are devoid of the M 1, M 2, Z 1, and Z 2 bands. The M 4, M 5 (C-protein doublet), and M 3 bands, however, remain associated with the filaments.

1985 ◽  
Vol 100 (1) ◽  
pp. 208-215 ◽  
Author(s):  
H C Hartzell ◽  
W S Sale

C protein is a component of the thick filament of striated muscles. Although the function of C protein remains unknown, a variety of evidence suggests that C protein may regulate actin-myosin interaction or be involved in structural support or elasticity of the sarcomere. We have previously proposed (Hartzell, H. C., 1984, J. Gen. Physiol., 83:563-588) that C protein is involved in regulating twitch relaxation in cardiac muscle. To gain further insight into the function of C protein, we have studied the structure of C protein purified from chicken heart. C protein was purified from extracts of detergent-washed myofibrils by sequential hydroxylapatite and DEAE-Sephacel chromatography. C protein was judged greater than 95% pure by SDS PAGE. The polypeptide subunit had a molecular weight of 155,000 and the native molecule sedimented on linear sucrose or glycerol gradients at 4-5S. For electron microscopy, purified C protein was dialyzed and diluted into a volatile buffer in 50% glycerol, aspirated onto mica, dried under vacuum, and rotary platinum-shadowed. Replicas revealed particles of relatively homogeneous overall dimensions. Over half of the particles were V-shaped. The "arm" lengths of the V-shaped particles were 22 +/- 4.5 nm (SD). Gel filtration on Sephacryl S-300 demonstrated that purified C protein had a Stokes' radius of 5.07 nm. Measurements of viscosity gave an intrinsic viscosity of 16.5 cm3/g. These data are consistent with the electron microscopic data and suggest that C protein in heart muscle is asymmetric. The C protein molecule is large enough to extend from the surface of a thick filament to adjacent thin or thick filaments.


1994 ◽  
Vol 267 (2) ◽  
pp. C443-C449 ◽  
Author(s):  
K. M. McCormick ◽  
K. M. Baldwin ◽  
F. Schachat

In this study, two new C protein isoforms in adult rat skeletal muscle were resolved using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These isoforms migrated between previously identified fast (Cf) and slow (Cs) C protein isoforms; hence they were named intermediate C proteins (Ci1 and Ci2). Cyanogen bromide peptide mapping and Western blotting showed that the intermediate isoforms were more similar to Cs than Cf. The distribution of specific C protein and myosin heavy chain (MHC) isoforms was highly correlated in several hindlimb muscles, suggesting that the expression of these two thick-filament proteins is coordinated. This notion was tested by determining whether specific C protein and MHC isoforms change in parallel during muscle hypertrophy. Eight weeks after ablation of its synergists, the overloaded plantaris muscle showed significant increases in type IIa MHC and intermediate C protein, with corresponding decreases in type IIb MHC and Cf protein. These results indicate that C protein expression is linked to MHC expression during plantaris muscle hypertrophy.


1965 ◽  
Vol 25 (3) ◽  
pp. 495-515 ◽  
Author(s):  
Jack Rosenbluth

The somatic musculature of the nematode, Ascaris, is currently thought to consist of smooth muscle fibers, which contain intracellular supporting fibrils arranged in a regular pattern. Electron microscopic examination shows that the muscle fibers are, in fact, comparable to the striated muscles of vertebrates in that they contain interdigitating arrays of thick and thin myofilaments which form H, A, and I bands. In the A bands each thick filament is surrounded by about 10 to 12 thin filaments. The earlier confusion about the classification of this muscle probably arose from the fact that in one longitudinal plane the myofilaments are markedly staggered and, as a result, the striations in that plane of section are not transverse but oblique, forming an angle of only about 6° with the filament axis. The apparent direction of the striations changes with the plane of the section and may vary all the way from radial to longitudinal. A three-dimensional model is proposed which accounts for the appearance of this muscle in various planes. Z lines as such are absent but are replaced by smaller, less orderly, counterpart "Z bundles" to which thin filaments attach. These bundles are closely associated with fibrillar dense bodies and with deep infoldings of the plasma membrane. The invaginations of the plasma membrane together with intracellular, flattened, membranous cisternae form dyads and triads. It is suggested that these complexes, which also occur at the cell surface, may constitute strategically located, low-impedance patches through which local currents are channeled selectively.


2002 ◽  
Vol 92 (4) ◽  
pp. 1506-1514 ◽  
Author(s):  
Paige C. Geiger ◽  
Mark J. Cody ◽  
Young Soo Han ◽  
Larry W. Hunter ◽  
Wen-Zhi Zhan ◽  
...  

We hypothesized that 1) hypothyroidism (Hyp) decreases myosin heavy chain (MHC) content per half-sarcomere in diaphragm muscle (Diam) fibers, 2) Hyp decreases the maximum specific force (Fmax) of Diam fibers because of the reduction in MHC content per half-sarcomere, and 3) Hyp affects MHC content per half-sarcomere and Fmax to a greater extent in fibers expressing MHC type 2X (MHC2X) and/or MHC type 2B (MHC2B). Studies were performed on single Triton X-permeabilized fibers activated at pCa 4.0. MHC content per half-sarcomere was determined by densitometric analysis of SDS-polyacrylamide gels and comparison with a standard curve of known MHC concentrations. After 3 wk of Hyp, MHC content per half-sarcomere was reduced in fibers expressing MHC2X and/or MHC2B. On the basis of electron-microscopic analysis, this reduction in MHC content was also reflected by a decrease in myofibrillar volume density and thick filament density. Hyp decreased Fmax across all MHC isoforms; however, the greatest decrease occurred in fibers expressing fast MHC isoforms (∼40 vs. ∼20% for fibers expressing slow MHC isoforms). When normalized for MHC content per half-sarcomere, force generated by Hyp fibers expressing MHC2A was reduced compared with control fibers, whereas force per half-sarcomere MHC content was higher for fibers expressing MHC2X and/or MHC2B in the Hyp Diam than for controls. These results indicate that the effect of Hyp is more pronounced on fibers expressing MHC2Xand/or MHC2B and that the reduction of Fmaxwith Hyp may be at least partially attributed to a decrease in MHC content per half-sarcomere but not to changes in force per cross bridge.


Author(s):  
D. A. Fischman ◽  
J. E. Dennis ◽  
T. Obinata ◽  
H. Takano-Ohmuro

C-protein is a 150 kDa protein found within the A bands of all vertebrate cross-striated muscles. By immunoelectron microscopy, it has been demonstrated that C-protein is distributed along a series of 7-9 transverse stripes in the medial, cross-bridge bearing zone of each A band. This zone is now termed the C-zone of the sarcomere. Interest in this protein has been sparked by its striking distribution in the sarcomere: the transverse repeat between C-protein stripes is 43 nm, almost exactly 3 times the 14.3 nm axial repeat of myosin cross-bridges along the thick filaments. The precise packing of C-protein in the thick filament is still unknown. It is the only sarcomeric protein which binds to both myosin and actin, and the actin-binding is Ca-sensitive. In cardiac and slow, but not fast, skeletal muscles C-protein is phosphorylated. Amino acid composition suggests a protein of little or no αhelical content. Variant forms (isoforms) of C-protein have been identified in cardiac, slow and embryonic muscles.


1997 ◽  
Vol 35 (7) ◽  
pp. 123-130 ◽  
Author(s):  
J. C. Liu ◽  
P. S. Chang

The solubility of chlorophenols as affected by surfactant was investigated. Three kinds of surfactant, sodium dodecyl sulfate, Triton X-100, and Brij 35, were utilized. The solubilization of chlorophenols by surfactant follows the order of 2,4,6-trichlorophenol > 2,4-dichlorophenol > 2,6-dichlorophenol > 2-chlorophenol; and the critical micelle concentration is an important index. The adsorption reactions of 2,4-dichlorophenol and 2,4,6- trichlorophenol onto hydrous montmorillonite in the presence of surfactant were examined. The presence of surfactant decreased the adsorption of chlorophenols significantly. The roles of hydrophobicity of chlorophenols in solubilization and adsorption behaviors are discussed.


2020 ◽  
Vol 22 (19) ◽  
pp. 11075-11085
Author(s):  
Mengjian Wu ◽  
Zhaoxia Wu ◽  
Shangwu Ding ◽  
Zhong Chen ◽  
Xiaohong Cui

Different submicellar solubilization mechanisms of two systems, Triton X-100/tetradecane and sodium dodecyl sulfate (SDS)/butyl methacrylate, are revealed on the molecular scale by 1H NMR spectroscopy and 2D diffusion ordered spectroscopy (DOSY).


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 631-643
Author(s):  
Pamela E Hoppe ◽  
Robert H Waterston

Abstract The precise arrangement of molecules within the thick filament, as well as the mechanisms by which this arrangement is specified, remains unclear. In this article, we have exploited a unique genetic interaction between one isoform of myosin heavy chain (MHC) and paramyosin in Caenorhabditis elegans to probe the molecular interaction between MHC and paramyosin in vivo. Using chimeric myosin constructs, we have defined a 322-residue region of the MHC A rod critical for suppression of the structural and motility defects associated with the unc-15(e73) allele. Chimeric constructs lacking this region of MHC A either fail to suppress, or act as dominant enhancers of, the e73 phenotype. Although the 322-residue region is required for suppression activity, our data suggest that sequences along the length of the rod also play a role in the isoform-specific interaction between MHC A and paramyosin. Our genetic and cell biological analyses of construct behavior suggest that the 322-residue region of MHC A is important for thick filament stability. We present a model in which this region mediates an avid interaction between MHC A and paramyosin in parallel arrangement in formation of the filament arms.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianghao Du ◽  
Zhanyun Zhu ◽  
Junchang Yang ◽  
Jia Wang ◽  
Xiaotong Jiang

AbstractIn this paper, a comparative study was conducted on the extraction effects of six agents for collagen-based mural painting binders. These agents were used to extract the residual proteins in the non-aged and thermal aged samples. The protein extraction efficiencies of different extracting agents were quantitatively determined by bicinchoninic acid (BCA) method, and then processed by multivariate analysis of variance (MANOVA). The impact of the extraction process on the protein structure was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), ultraviolet absorption spectrum (UV) and circular dichroism (CD). The results showed that, for both non-aged and aged samples, the extraction efficiency of 2 M guanidine hydrochloride (GuHCl) was significantly higher than the other five agents, with less damage to the protein structure during the extraction process.


Sign in / Sign up

Export Citation Format

Share Document