scholarly journals Particle arrays in earthworm postjunctional membranes.

1978 ◽  
Vol 76 (1) ◽  
pp. 76-86 ◽  
Author(s):  
J Rosenbluth

Analysis of freeze-fractured earthworm body wall muscle reveals distinctive trough-shaped concavities in the protoplasmic leaflet of the muscle cell membrane which contain diagonally oriented rows of particles sometimes in highly ordered arrays. The troughs correspond to the concave postjunctional patches of sarcolemma seen previously in thin sections of myoneural junctions identified as cholinergic, and the intramembranous particles within the troughs correspond in concentration and arrangement to granular elements present in the outer dense lamina of the postjunctional membrane which were interpreted as acetylcholine receptors. The freeze-fracture data provide a more accurate picture of the arrangement of these putative receptors within the plane of the membrane, and indicate also that they extend into the membrane at least as far as its hydrophobic layer.

2000 ◽  
Vol 150 (1) ◽  
pp. 253-264 ◽  
Author(s):  
Teresa M. Rogalski ◽  
Gregory P. Mullen ◽  
Mary M. Gilbert ◽  
Benjamin D. Williams ◽  
Donald G. Moerman

Embryos homozygous for mutations in the unc-52, pat-2, pat-3, and unc-112 genes of C. elegans exhibit a similar Pat phenotype. Myosin and actin are not organized into sarcomeres in the body wall muscle cells of these mutants, and dense body and M-line components fail to assemble. The unc-52 (perlecan), pat-2 (α-integrin), and pat-3 (β-integrin) genes encode ECM or transmembrane proteins found at the cell–matrix adhesion sites of both dense bodies and M-lines. This study describes the identification of the unc-112 gene product, a novel, membrane-associated, intracellular protein that colocalizes with integrin at cell–matrix adhesion complexes. The 720–amino acid UNC-112 protein is homologous to Mig-2, a human protein of unknown function. These two proteins share a region of homology with talin and members of the FERM superfamily of proteins. We have determined that a functional UNC-112::GFP fusion protein colocalizes with PAT-3/β-integrin in both adult and embryonic body wall muscle. We also have determined that UNC-112 is required to organize PAT-3/β-integrin after it is integrated into the basal cell membrane, but is not required to organize UNC-52/perlecan in the basement membrane, nor for DEB-1/vinculin to localize with PAT-3/β-integrin. Furthermore, UNC-112 requires the presence of UNC-52/perlecan and PAT-3/β-integrin, but not DEB-1/vinculin to become localized to the muscle cell membrane.


Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 483-498
Author(s):  
J Ahnn ◽  
A Fire

Abstract We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.


1996 ◽  
Vol 39 (11) ◽  
pp. 1860-1868 ◽  
Author(s):  
Bruno Stuhlmüller ◽  
Ricardo Jerez ◽  
Gert Hausdorf ◽  
Hans-R. Barthel ◽  
Michael Meurer ◽  
...  

1996 ◽  
Vol 271 (3) ◽  
pp. R738-R750 ◽  
Author(s):  
Y. Wang ◽  
G. J. Heigenhauser ◽  
C. M. Wood

Manipulations of pH and electrical gradients in a perfused preparation were used to analyze the factors controlling ammonia distribution and flux in trout white muscle after exercise. Trout were exercised to exhaustion, and then an isolated-perfused white muscle preparation with discrete arterial inflow and venous outflow was made from the posterior portion of the tail. The tail-trunks were perfused with low (7.4)-, medium (7.9)-, and high (8.4)-pH saline, achieved by varying HCO3- concentration ([HCO3-]) at constant Pco2. Intracellular and extracellular pH, ammonia, CO2, K+, Na+, and Cl- were measured. Muscle intracellular pH was not affected by changes in extracellular pH. Increasing extracellular pH caused a decrease in the transmembrane NH3 partial pressure (PNH3) gradient and a decrease in ammonia efflux. When extracellular K+ concentration was increased from 3.5 to 15 mM in the medium-pH group, a depolarization of the muscle cell membrane potential from -92 to -60 mV and a 0.1-unit depression in intracellular pH occurred. Ammonia efflux increased despite a marked reduction in the PNH3 gradient. Amiloride (10(-4) M) had no effect, indicating that Na+/H(+)-NH4+ exchange does not participate in ammonia transport in this system. A comparison of observed intracellular-to-extracellular ammonia distribution ratios with those modeled according to either pH or Nernst potential distributions supports a model in which ammonia distribution across white muscle cell membranes is affected by both pH and electrical gradients, indicating that the membranes are permeable to both NH3 and NH4+. Membrane potential, acting to retain high levels of NH4+ in the intracellular compartment, appears to have the dominant influence during the postexercise period. However, at rest, the pH gradient may be more important, resulting in much lower intracellular ammonia levels and distribution ratios. We speculate that the muscle cell membrane NH3-to-NH4+ permeability ratio in trout may change between the rest and postexercise condition.


2014 ◽  
Vol 12 (41) ◽  
pp. 8174-8179 ◽  
Author(s):  
Hui-Yan Zha ◽  
Bing Shen ◽  
Kwok-Hei Yau ◽  
Shing-To Li ◽  
Xiao-Qiang Yao ◽  
...  

A molecule forms a K+-selective channel in the cell membrane to regulate vascular muscle cell membrane potential and blood vessel tone.


2006 ◽  
Vol 291 (6) ◽  
pp. L1169-L1176 ◽  
Author(s):  
Candice D. Fike ◽  
Mark R. Kaplowitz ◽  
Yongmei Zhang ◽  
Jane A. Madden

Our purpose was to determine whether smooth muscle cell membrane properties are altered in small pulmonary arteries (SPA) of piglets at an early stage of pulmonary hypertension. Piglets were raised in either room air (control) or hypoxia for 3 days. A microelectrode technique was used to measure smooth muscle cell membrane potential ( Em) in cannulated, pressurized SPA (100- to 300-μm diameter). SPA responses to the voltage-gated K+ (KV) channel antagonist 4-aminopyridine (4-AP) and the KV1 family channel antagonist correolide were measured. Other SPA were used to assess amounts of KV1.2, KV1.5, and KV2.1 (immunoblot technique). Em was more positive in SPA of chronically hypoxic piglets than in SPA of comparable-age control piglets. The magnitude of constriction elicited by either 4-AP or correolide was diminished in SPA from hypoxic piglets. Abundances of KV1.2 were reduced, whereas abundances of both KV1.5 and KV2.1 were unaltered, in SPA from hypoxic piglets. At least partly because of reduced amounts of KV1.2, smooth muscle cell membrane properties are altered such that Em is depolarized and KV channel family function is impaired in SPA of piglets at an early stage of chronic hypoxia-induced pulmonary hypertension.


Sign in / Sign up

Export Citation Format

Share Document