scholarly journals Transverse sarcomere splitting. A possible means of longitudinal growth in crab muscles.

1979 ◽  
Vol 80 (3) ◽  
pp. 736-742 ◽  
Author(s):  
S S Jahromi ◽  
M P Charlton

Transversely split sarcomeres are seen in mouthpart muscles of the blue crab in the electron microscope. Sarcomeres split only at the H zone. Two new sarcomeres are formed by a Z disk which appears in the H zone of the splitting sarcomere. Splitting may involve breaking of the thick filaments in the H zone, elongation of these filaments, and formation of both new actin filaments and Z-disk materials, Sarcomere splitting would allow longitudinal growth of muscle cells without lengthening of sarcomeres and concomitant changes in contractile properties.

1977 ◽  
Vol 72 (3) ◽  
pp. 777-785 ◽  
Author(s):  
Y Shimada ◽  
T Obinata

The polarity of thin filaments in relation to thick filaments in developing muscle cells in vitro was investigated. The majority of thin filaments exhibited the right polarity and spatial position similar to that seen in mature myofibrils. It appears that the interaction between thick and thin filaments exists in the initial phases of myofibrillogenesis. Cortical microfilaments are found to have their polarities arranged randomly.


1957 ◽  
Vol 3 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Alan R. Muir

Prenatal and postnatal cardiac muscle from rabbits has been studied by electron microscopy, after osmium fixation and methacrylate embedding. The observations showed that 1. Cell membranes divide the muscle into cellular units from the youngest embryo which was studied (9½ days after coitus) until the adult state. 2. The embryonic muscle cells contain only one nucleus, whereas the adult cell may be multinucleated. 3. At all stages of development, wherever a myofibrillar axis crosses a cellular boundary, the myofilaments are interrupted by an intercalated disc. 4. With age, increase in size and complexity of the discs render them recognisable by the light microscope.


1997 ◽  
Vol 45 (6) ◽  
pp. 837-846 ◽  
Author(s):  
Johan Thyberg ◽  
Karin Blomgren ◽  
Joy Roy ◽  
Phan Kiet Tran ◽  
Ulf Hedin

Earlier in vitro studies suggest opposing roles of laminin and fibronectin in regulation of differentiated properties of vascular smooth muscle cells. To find out if this may also be the case in vivo, we used immunoelectron microscopy to study the distribution of these proteins during formation of intimal thickening after arterial injury. In parallel, cell structure and content of smooth muscle α-actin was analyzed. The results indicate that the cells in the normal media are in a contractile phenotype with abundant α-actin filaments and an incomplete basement membrane. Within 1 week after endothelial denudation, most cells in the innermost layer of the media convert into a synthetic phenotype, as judged by loss of actin filaments, construction of a large secretory apparatus, and destruction of the basement membrane. Some of these cells migrate through fenestrae in the internal elastic lamina and invade a fibronectin-rich network deposited on its luminal surface. Within another few weeks a thick neointima forms, newly produced matrix components replace the strands of fibronectin, and a basement membrane reappears. Simultaneously, the cells resume a contractile phenotype, recognized by disappearance of secretory organelles and restoration of α-actin filaments. These findings support the notion that laminin and other basement membrane components promote the expression of a differentiated smooth muscle phenotype, whereas fibronectin stimulates the cells to adopt a proliferative and secretory phenotype.


1967 ◽  
Vol 35 (2) ◽  
pp. 405-420 ◽  
Author(s):  
Elizabeth B. Ezerman ◽  
Harunori Ishikawa

The electron microscope was used to investigate the first 10 days of differentiation of the SR and the T system in skeletal muscle cultured from the breast muscle of 11-day chick embryos. The T-system tubules could be clearly distinguished from the SR in developing muscle cells fixed with glutaraldehyde and osmium tetroxide. Ferritin diffusion confirmed this finding: the ferritin particles were found only in the tubules identified as T system. The proliferation of both membranous systems seemed to start almost simultaneously at the earliest myotube stage. Observations suggested that the new SR membranes developed from the rough-surfaced ER as tubular projections. The SR tubules connected with one another to form a network around the myofibril. The T-system tubules were formed by invagination of the sarcolemma. The early extension of the T system by branching and budding was seen only in subsarcolemmal regions. Subsequently the T-system tubules could be seen deep within the muscle cells. Immediately after invaginating, the T-system tubule formed, along its course, specialized connections with the SR or ER: triadic structures showing various degrees of differentiation. The simultaneous occurrence of myofibril formation and membrane proliferation is considered to be important in understanding the coordinated events resulting in the differentiated myotube.


2014 ◽  
Vol 106 (2) ◽  
pp. 159a
Author(s):  
Albert Kalganov ◽  
Aleksander Labuda ◽  
Dilson Rassier

Sign in / Sign up

Export Citation Format

Share Document