scholarly journals Different polypeptides form the intermediate filaments in bovine hoof and esophageal epithelium and in aortic endothelium.

1981 ◽  
Vol 88 (2) ◽  
pp. 312-316 ◽  
Author(s):  
L M Milstone ◽  
J McGuire

Polypeptides that form 10-nm filaments in vitro were isolated from three different bovine tissues: the viable portion of the hoof epithelium, the epithelium of the esophagus, and cultured endothelial cells derived from aorta. The seven polypeptides from hoof, the two from esophagus, and the one from endothelial cells were different with respect to mobility in SDS polyacrylamide gels and/or limited proteolytic digestion. Peptide maps of the different filament-forming polypeptides (FFP's) showed that none of the smaller FFP's was a fragment of any of the larger FFP's. Several isomobile fragments were found in the peptide maps of different FFP's, suggesting that they might contain regions of amino acid sequence homology. We present a hypothesis that suggests how the different 10-nm filament-forming proteins may be related.

1978 ◽  
Vol 173 (2) ◽  
pp. 543-552 ◽  
Author(s):  
R W Evans ◽  
J Williams

1. Trypsin digestion of human serum transferrin partially saturated with iron(III)-nitrilotriacetate at pH 5.5 or pH 8.5 produces a carbohydrate-containing iron-binding fragment of mol.wt. 43000. 2. When iron(III) citrate, FeCl3, iron (III) ascorabate and (NH4)2SO4,FeSO4 are used as iron donors to saturate the protein partially, at pH8.5, proteolytic digestion yields a fragment of mol.wt. 36000 that lacks carbohydrate. 3. The two fragments differ in their antigenic structures, amino acid compositions and peptide ‘maps’. 4. The fragment with mol.wt. 36000 was assigned to the N-terminal region of the protein and the other to the C-terminal region. 5. The distribution of iron in human serum transferrin partially saturated with various iron donors was examined by electrophoresis in urea/polyacrylamide gels and the two possible monoferric forms were unequivocally identified. 6. The site designated A on human serum transferrin [Harris (1977) Biochemistry 16, 560–564] was assigned to the C-terminal region of the protein and the B site to the N-terminal region. 7. The distribution of iron on transferrin in human plasma was determined.


Author(s):  
Lili Quan ◽  
Ryuichi Ohgaki ◽  
Saori Hara ◽  
Suguru Okuda ◽  
Ling Wei ◽  
...  

Abstract Background Tumor angiogenesis is regarded as a rational anti-cancer target. The efficacy and indications of anti-angiogenic therapies in clinical practice, however, are relatively limited. Therefore, there still exists a demand for revealing the distinct characteristics of tumor endothelium that is crucial for the pathological angiogenesis. L-type amino acid transporter 1 (LAT1) is well known to be highly and broadly upregulated in tumor cells to support their growth and proliferation. In this study, we aimed to establish the upregulation of LAT1 as a novel general characteristic of tumor-associated endothelial cells as well, and to explore the functional relevance in tumor angiogenesis. Methods Expression of LAT1 in tumor-associated endothelial cells was immunohistologically investigated in human pancreatic ductal adenocarcinoma (PDA) and xenograft- and syngeneic mouse tumor models. The effects of pharmacological and genetic ablation of endothelial LAT1 were examined in aortic ring assay, Matrigel plug assay, and mouse tumor models. The effects of LAT1 inhibitors and gene knockdown on cell proliferation, regulation of translation, as well as on the VEGF-A-dependent angiogenic processes and intracellular signaling were investigated in in vitro by using human umbilical vein endothelial cells. Results LAT1 was highly expressed in vascular endothelial cells of human PDA but not in normal pancreas. Similarly, high endothelial LAT1 expression was observed in mouse tumor models. The angiogenesis in ex/in vivo assays was suppressed by abrogating the function or expression of LAT1. Tumor growth in mice was significantly impaired through the inhibition of angiogenesis by targeting endothelial LAT1. LAT1-mediated amino acid transport was fundamental to support endothelial cell proliferation and translation initiation in vitro. Furthermore, LAT1 was required for the VEGF-A-dependent migration, invasion, tube formation, and activation of mTORC1, suggesting a novel cross-talk between pro-angiogenic signaling and nutrient-sensing in endothelial cells. Conclusions These results demonstrate that the endothelial LAT1 is a novel key player in tumor angiogenesis, which regulates proliferation, translation, and pro-angiogenic VEGF-A signaling. This study furthermore indicates a new insight into the dual functioning of LAT1 in tumor progression both in tumor cells and stromal endothelium. Therapeutic inhibition of LAT1 may offer an ideal option to potentiate anti-angiogenic therapies.


2016 ◽  
Vol 62 (6) ◽  
pp. 664-669 ◽  
Author(s):  
V.A. Ruzaeva ◽  
A.V. Morgun ◽  
E.D. Khilazheva ◽  
N.V. Kuvacheva ◽  
E.A. Pozhilenkova ◽  
...  

Barriergenesis is the process of maturation of the primary vascular network of the brain responsible for the establishment of the blood-brain barrier. It represents a combination of factors that, on the one hand, contribute to the process of migration and tubulogenesis of endothelial cells (angiogenesis), on the other hand, contribute to the formation of new connections between endothelial cells and other elements of the neurovascular unit. Astrocytes play a key role in barriergenesis, however, mechanisms of their action are still poorly examined. We have studied the effects of HIF-1 modulators acting on the cells of non-endothelial origin (neurons and astrocytes) on the development of the blood-brain barrier in vitro. Application of FM19G11 regulating expression of HIF-1 activity and GSI-1 suppressing gamma-secretase and/or proteasomal activity resulted in the elevated expression of thrombospondins and matrix metalloproteinases in the developing blood-brain barrier. However, it caused the opposite effect on VEGF expression thus promoting barrier maturation in vitro.


Blood ◽  
2004 ◽  
Vol 103 (2) ◽  
pp. 601-606 ◽  
Author(s):  
Carolyn A. Staton ◽  
Nicola J. Brown ◽  
Gary R. Rodgers ◽  
Kevin P. Corke ◽  
Simon Tazzyman ◽  
...  

Abstract Angiogenesis, the development of new blood vessels from existing vasculature, is crucial for the development and metastasis of solid tumors. Here, we show for the first time that a 24–amino acid peptide derived from the amino terminus of the alpha chain of human fibrinogen (termed “alphastatin”) has potent antiangiogenic properties, inhibiting both the migration and tubule formation of human dermal microvascular endothelial cells in response to vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) in vitro. Moreover, alphastatin markedly inhibits the growth of tumors in a syngeneic murine model. Tumors from mice receiving daily injections of alphastatin for 12 days exhibited large areas of intravascular disruption and thrombosis with substantial cellular necrosis. Importantly, alphastatin administration had no detectable effect on vessels in such normal tissues as liver, lungs, and kidney. Taken together, these data indicate that alphastatin is a potent new antiangiogenic agent in vitro and antivascular agent in vivo.


2003 ◽  
Vol 15 (1) ◽  
pp. 38-43 ◽  
Author(s):  
L Pepplinkhuizen ◽  
F M M A van der Heijden ◽  
S Tuinier ◽  
W M A Verhoeven ◽  
D Fekkes

Background:The pathogenesis of atypical psychoses, in particularly those characterized by polymorphic psychopathology, is hypothesized to be related to disturbances in amino acid metabolism.Objective:In the present study, the role of the amino acid serine was investigated in patients with acute transient polymorphic psychosis.Methods:Patients were loaded with serine and with the amino acids glycine and alanine as controls and subsequently evaluated for the development of psychopathological symptoms. In addition, plasma levels of amino acids were measured.Results:In a subgroup of patients suffering from atypical psychoses, this biochemical challenge resulted in the reappearance of psychedelic symptoms in particular. Furthermore, significantly lower plasma concentrations of serine were found. In vitro experiments revealed a disturbance in the one-carbon metabolism. In another group of patients the loading provoked vegetative symptoms and fatigue.Conclusions:Disturbances in amino acid metabolism may be involved in the emergence of certain psychotic disorders.


Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


Author(s):  
D.J.P. Ferguson ◽  
M. Virji ◽  
H. Kayhty ◽  
E.R. Moxon

Haemophilus influenzae is a human pathogen which causes meningitis in children. Systemic H. influenzae infection is largely confined to encapsulated serotype b organisms and is a major cause of meningitis in the U.K. and elsewhere. However, the pathogenesis of the disease is still poorly understood. Studies in the infant rat model, in which intranasal challenge results in bacteraemia, have shown that H. influenzae enters submucosal tissues and disseminates to the blood stream within minutes. The rapidity of these events suggests that H. influenzae penetrates both respiratory epithelial and endothelial barriers with great efficiency. It is not known whether the bacteria penetrate via the intercellular junctions, are translocated within the cells or carried across the cellular barrier in 'trojan horse' fashion within phagocytes. In the present studies, we have challenged cultured human umbilical cord_vein endothelial cells (HUVECs) with both capsulated (b+) and capsule-deficient (b-) isogenic variants of one strain of H. influenzae in order to investigate the interaction between the bacteria and HUVEC and the effect of the capsule.


Sign in / Sign up

Export Citation Format

Share Document