scholarly journals Dissection of the Golgi complex. II. Density separation of specific Golgi functions in virally infected cells treated with monensin.

1983 ◽  
Vol 96 (3) ◽  
pp. 851-856 ◽  
Author(s):  
P Quinn ◽  
G Griffiths ◽  
G Warren

In the accompanying paper (Griffiths, G., P. Quinn, and G. Warren, 1983, J. Cell Biol., 96:835-850), we suggested that the Golgi stack could be divided into functionally distinct cis, medial, and trans compartments, each comprising one or two adjacent cisternae. These compartments were identified using Baby hamster kidney (BHK) cells infected with Semliki Forest virus (SFV) and treated with monensin. This drug blocked intracellular transport but not synthesis of the viral membrane proteins that were shown to accumulate in the medial cisternae. In consequence, these cisternae bound nucleocapsids. Here we show that this binding markedly increased the density of the medial cisternae and allowed us to separate them from cis and trans Golgi cisternae. A number of criteria were used to show that the intracellular capsid-binding membranes (ICBMs) observed in vivo were the same as those membranes sedimenting to a higher density in sucrose gradients in vitro, and this separation of cisternae was then used to investigate the distribution, within the Golgi stack, of some specific Golgi functions. After labeling for 2.5 min with [3H]palmitate, most of the fatty acid attached to viral membrane proteins was found in the ICBM fraction. Because the viral membrane proteins appear to move from cis to trans, this suggests that fatty acylation occurs in the cis or medial Golgi cisternae. In contrast, the distribution of alpha 1-2-mannosidase, an enzyme involved in trimming high-mannose oligosaccharides, and of galactosyl transferase, which is involved in the construction of complex oligosaccharides, was not affected by monensin treatment. Together with data in the accompanying paper, this would restrict these two Golgi functions to the trans cisternae. Our data strongly support the view that Golgi functions have specific and discrete locations within the Golgi stack.

1983 ◽  
Vol 96 (3) ◽  
pp. 835-850 ◽  
Author(s):  
G Griffiths ◽  
P Quinn ◽  
G Warren

Baby hamster kidney (BHK) cells were infected with Semliki Forest virus (SFV) and, 2 h later, were treated for 4 h with 10 microM monensin. Each of the four to six flattened cisternae in the Golgi stack became swollen and separated from the others. Intracellular transport of the viral membrane proteins was almost completely inhibited, but their synthesis continued and they accumulated in the swollen Golgi cisternae before the monensin block. In consequence, these cisternae bound large numbers of viral nucleocapsids and were easily distinguished from other swollen cisternae such as those after the block. These intracellular capsid-binding membranes (ICBMs) were not stained by cytochemical markers for endoplasmic reticulum (ER) (glucose-6-phosphatase) or trans Golgi cisternae (thiamine pyrophosphatase, acid phosphatase) but were labeled by Ricinus communis agglutinin I (RCA) in thin, frozen sections. Since this lectin labels only Golgi cisternae in the middle and on the trans side of the stack (Griffiths, G., R. Brands, B. Burke, D. Louvard, and G. Warren, 1982, J. Cell Biol., 95:781-792), we conclude that ICBMs are derived from Golgi cisternae in the middle of the stack, which we term medial cisternae. The overall movement of viral membrane proteins appears to be from cis to trans Golgi cisternae (see reference above), so monensin would block movement from medial to the trans cisternae. It also blocked the trimming of the high-mannose oligosaccharides bound to the viral membrane proteins and their conversion to complex oligosaccharides. These functions presumably reside in trans Golgi cisternae. This is supported by data in the accompanying paper, in which we also show that fatty acids are covalently attached to the viral membrane proteins in the cis or medial cisternae. We suggest that the Golgi stack can be divided into three functionally distinct compartments, each comprising one or two cisternae. The viral membrane proteins, after leaving the ER, would all pass in sequence from the cis to the medial to the trans compartment.


2003 ◽  
Vol 77 (5) ◽  
pp. 2981-2989 ◽  
Author(s):  
Xinyong Zhang ◽  
Martin Fugère ◽  
Robert Day ◽  
Margaret Kielian

ABSTRACT The alphavirus Semliki Forest virus (SFV) infects cells via a low-pH-dependent membrane fusion reaction mediated by the E1 envelope protein. Fusion is regulated by the interaction of E1 with the receptor-binding protein E2. E2 is synthesized as a precursor termed “p62,” which forms a stable heterodimer with E1 and is processed late in the secretory pathway by a cellular furin-like protease. Once processing to E2 occurs, the E1/E2 heterodimer is destabilized so that it is more readily dissociated by exposure to low pH, allowing fusion and infection. We have used FD11 cells, a furin-deficient CHO cell line, to characterize the processing of p62 and its role in the control of virus fusion and infection. p62 was not cleaved in FD11 cells and cleavage was restored in FD11 cell transfectants expressing human furin. Studies of unprocessed virus produced in FD11 cells (wt/p62) demonstrated that the p62 protein was efficiently cleaved by purified furin in vitro, without requiring prior exposure to low pH. wt/p62 virus particles were also processed during their endocytic uptake in furin-containing cells, resulting in more efficient virus infection. wt/p62 virus was compared with mutant L, in which p62 cleavage was blocked by mutation of the furin-recognition motif. wt/p62 and mutant L had similar fusion properties, requiring a much lower pH than control virus to trigger fusion and fusogenic E1 conformational changes. However, the in vivo infectivity of mutant L was more strongly inhibited than that of wt/p62, due to additional effects of the mutation on virus-cell binding.


1979 ◽  
Vol 57 (6) ◽  
pp. 902-913 ◽  
Author(s):  
Patrick W. K. Lee ◽  
John S. Colter

Studies of the synthesis of viral ribonucleates and polypeptides in cells infected with two RNA−ts mutants of Mengo virus (ts 135 and ts 520) have shown that when ts 135 infected cells are shifted from the permissive (33 °C) to the nonpermissive (39 °C) temperature: (i) the synthesis of all three species of viral RNA (single stranded, replicative form, and replicative intermediate) is inhibited to about the same extent, and (ii) the posttranslational cleavage of structural polypeptide precursors A and B is partially blocked. Investigations of the in vivo and in vitro stability of the viral RNA replicase suggest that the RNA− phentotype reflects a temperature-sensitive defect in the enzyme. The second defect does not appear to result from the inhibition of viral RNA synthesis at 39 °C, since normal cleavage of polypeptides A and B occurs in wt Mengo-infected cells in which viral RNA synthesis is blocked by cordycepin, and at the nonpermissive temperature in ts 520 infected cells. Considered in toto, the evidence suggests that ts 135 is a double mutant.Subviral (53 S) particles have been shown to accumulate in ts 520 (but not ts 135) infected cells when cultures are shifted from 33 to 39 °C. This observation provides supporting evidence for the proposal that this recently discovered particle is an intermediate in the assembly pathway of Mengo virions.


FEBS Letters ◽  
2001 ◽  
Vol 504 (3) ◽  
pp. 99-103 ◽  
Author(s):  
Kenneth Lundstrom ◽  
Christophe Schweitzer ◽  
Daniel Rotmann ◽  
Danielle Hermann ◽  
Edith M. Schneider ◽  
...  

2005 ◽  
Vol 79 (4) ◽  
pp. 2366-2374 ◽  
Author(s):  
Pilar Perez-Romero ◽  
Ryan E. Tyler ◽  
Johanna R. Abend ◽  
Monica Dus ◽  
Michael J. Imperiale

ABSTRACT We previously showed that the adenovirus IVa2 and L1 52/55-kDa proteins interact in infected cells and the IVa2 protein is part of two virus-specific complexes (x and y) formed in vitro with repeated elements of the packaging sequence called the A1-A2 repeats. Here we demonstrate that both the IVa2 and L1 52/55-kDa proteins bind in vivo to the packaging sequence and that each protein-DNA interaction is independent of the other. There is a strong and direct interaction of the IVa2 protein with DNA in vitro. This interaction is observed when probes containing the A1-A2 or A4-A5 repeats are used, but it is not found by using an A5-A6 probe. Furthermore, we show that complex x is likely a heterodimer of IVa2 and an unknown viral protein, while complex y is a monomer or multimer of IVa2. No in vitro interaction of purified L1 52/55-kDa protein with the packaging sequence was found, suggesting that the L1 52/55-kDa protein-DNA interaction may be mediated by an intermediate protein. Results support roles for both the L1 52/55-kDa and IVa2 proteins in DNA encapsidation.


1980 ◽  
Vol 29 (2) ◽  
pp. 575-582
Author(s):  
Robert E. Baughn ◽  
Kenneth S. K. Tung ◽  
Daniel M. Musher

The in vivo and in vitro immunoglobulin G plaque-forming cell responses to sheep erythrocytes (SRBC) are nearly obliterated during disseminated syphilitic infection (3 to 8 weeks post-intravenous injection) in rabbits. Splenic and lymph node cells obtained from infected rabbits during this time period were capable of suppressing the normal in vitro responses of uninfected, SRBC-primed cells. Cell-free washings of cells from infected animals were also suppressive. This finding coupled with the fact that treatment of infected cells with proteolytic enzymes abrogated the suppressive effect constitute arguments against involvement of a specific suppressor cell population. The incidence of elevated levels of circulating immune complexes in the sera of rabbits with disseminated disease was also significantly different from that of uninfected controls or infected rabbits before the onset or after the regression of lesions. When added to cultures of lymphocytes from uninfected, SRBC-sensitized rabbits, sera containing complexes caused dose-related suppression of the in vitro immunoglobulin responses. Unlike immune complexes, no correlation was found between the presence of mucopolysaccharide materials and the stage of infection or the ability of serum to suppress the immunoglobulin responses to SRBC.


2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Teslin S. Sandstrom ◽  
Nischal Ranganath ◽  
Stephanie C. Burke Schinkel ◽  
Syim Salahuddin ◽  
Oussama Meziane ◽  
...  

ABSTRACT The use of unique cell surface markers to target and eradicate HIV-infected cells has been a longstanding objective of HIV-1 cure research. This approach, however, overlooks the possibility that intracellular changes present within HIV-infected cells may serve as valuable therapeutic targets. For example, the identification of dysregulated antiviral signaling in cancer has led to the characterization of oncolytic viruses capable of preferentially killing cancer cells. Since impairment of cellular antiviral machinery has been proposed as a mechanism by which HIV-1 evades immune clearance, we hypothesized that HIV-infected macrophages (an important viral reservoir in vivo) would be preferentially killed by the interferon-sensitive oncolytic Maraba virus MG1. We first showed that HIV-infected monocyte-derived macrophages (MDM) were more susceptible to MG1 infection and killing than HIV-uninfected cells. As MG1 is highly sensitive to type I interferons (IFN-I), we then investigated whether we could identify IFN-I signaling differences between HIV-infected and uninfected MDM and found evidence of impaired IFN-α responsiveness within HIV-infected cells. Finally, to assess whether MG1 could target a relevant, primary cell reservoir of HIV-1, we investigated its effects in alveolar macrophages (AM) obtained from effectively treated individuals living with HIV-1. As observed with in vitro-infected MDM, we found that HIV-infected AM were preferentially eliminated by MG1. In summary, the oncolytic rhabdovirus MG1 appears to preferentially target and kill HIV-infected cells via impairment of antiviral signaling pathways and may therefore provide a novel approach to an HIV-1 cure. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) remains a treatable, but incurable, viral infection. The establishment of viral reservoirs containing latently infected cells remains the main obstacle in the search for a cure. Cure research has also focused on only one cellular target of HIV-1 (the CD4+ T cell) while largely overlooking others (such as macrophages) that contribute to HIV-1 persistence. In this study, we address these challenges by describing a potential strategy for the eradication of HIV-infected macrophages. Specifically, we show that an engineered rhabdovirus—initially developed as a cancer therapy—is capable of preferential infection and killing of HIV-infected macrophages, possibly via the same altered antiviral signaling seen in cancer cells. As this rhabdovirus is currently being explored in phase I/II clinical trials, there is potential for this approach to be readily adapted for use within the HIV-1 cure field.


2008 ◽  
Vol 205 (8) ◽  
pp. 1929-1938 ◽  
Author(s):  
César Muñoz-Fontela ◽  
Salvador Macip ◽  
Luis Martínez-Sobrido ◽  
Lauren Brown ◽  
Joseph Ashour ◽  
...  

Tumor suppressor p53 is activated by several stimuli, including DNA damage and oncogenic stress. Previous studies (Takaoka, A., S. Hayakawa, H. Yanai, D. Stoiber, H. Negishi, H. Kikuchi, S. Sasaki, K. Imai, T. Shibue, K. Honda, and T. Taniguchi. 2003. Nature. 424:516–523) have shown that p53 is also induced in response to viral infections as a downstream transcriptional target of type I interferon (IFN) signaling. Moreover, many viruses, including SV40, human papillomavirus, Kaposi's sarcoma herpesvirus, adenoviruses, and even RNA viruses such as polioviruses, have evolved mechanisms designated to abrogate p53 responses. We describe a novel p53 function in the activation of the IFN pathway. We observed that infected mouse and human cells with functional p53 exhibited markedly decreased viral replication early after infection. This early inhibition of viral replication was mediated both in vitro and in vivo by a p53-dependent enhancement of IFN signaling, specifically the induction of genes containing IFN-stimulated response elements. Of note, p53 also contributed to an increase in IFN release from infected cells. We established that this p53-dependent enhancement of IFN signaling is dependent to a great extent on the ability of p53 to activate the transcription of IFN regulatory factor 9, a central component of the IFN-stimulated gene factor 3 complex. Our results demonstrate that p53 contributes to innate immunity by enhancing IFN-dependent antiviral activity independent of its functions as a proapoptotic and tumor suppressor gene.


1997 ◽  
Vol 273 (4) ◽  
pp. L814-L824 ◽  
Author(s):  
Zhou Zhu ◽  
Weiliang Tang ◽  
Jack M. Gwaltney ◽  
Yang Wu ◽  
Jack A. Elias

Neutrophil infiltration is a well-documented early event in the pathogenesis of rhinovirus (RV) infections. To further understand the mechanisms responsible for this neutrophilia, we determined whether interleukin (IL)-8 was present at sites of experimental RV infection in vivo and characterized the mechanism(s) by which RV stimulates IL-8 production in vitro. IL-8 was readily detectable in the nasal washings of all normal volunteers and did not increase with sham nasal inoculation. In contrast, RV infection caused a significant additional increase in nasal IL-8, the levels of which peaked 48–72 h after virus inoculation. RV was a potent stimulator of IL-8 protein production by A549 epithelial-like cells, MRC-5 fibroblasts, and normal human bronchial epithelial cells in vitro. This induction was associated with a significant increase in IL-8 mRNA accumulation and gene transcription. RV also stimulated IL-8 promoter-driven luciferase activity. This stimulation was significantly decreased by mutation of the nuclear factor (NF)-IL-6 site and was completely abrogated by mutation of the NF-κB site in this promoter. In addition, NF-κB-DNA binding activity was rapidly induced in RV-infected cells. This inducible binding was made up of p65 and, to a lesser extent, p50 NF-κB moieties. These studies demonstrate that IL-8 is present in normal nasal secretions and that the levels of IL-8 are further increased after RV infection. They also demonstrate that RVs are potent stimulators of IL-8 production and that this induction is mediated, at least in part, by an NF-κB-dependent transcriptional activation pathway. IL-8 may contribute to the pathogenesis of RV infection, and NF-κB activation may be a central event in RV-induced pathologies.


Sign in / Sign up

Export Citation Format

Share Document